Another proof of the persistence of Serre symmetry in the Frölicher spectral sequence

IF 0.5 Q3 MATHEMATICS
A. Milivojević
{"title":"Another proof of the persistence of Serre symmetry in the Frölicher spectral sequence","authors":"A. Milivojević","doi":"10.1515/coma-2020-0008","DOIUrl":null,"url":null,"abstract":"Abstract Serre’s duality theorem implies a symmetry between the Hodge numbers, hp,q = hn−p,n−q, on a compact complex n–manifold. Equivalently, the first page of the associated Frölicher spectral sequence satisfies dimE1p,q=dimE1n−p,n−q \\dim E_1^{p,q} = \\dim E_1^{n - p,n - q} for all p, q. Adapting an argument of Chern, Hirzebruch, and Serre [3] in an obvious way, in this short note we observe that this “Serre symmetry” dimEkp,q=dimEkn−p,n−q \\dim E_k^{p,q} = \\dim E_k^{n - p,n - q} holds on all subsequent pages of the spectral sequence as well. The argument shows that an analogous statement holds for the Frölicher spectral sequence of an almost complex structure on a nilpotent real Lie group as considered by Cirici and Wilson in [4].","PeriodicalId":42393,"journal":{"name":"Complex Manifolds","volume":"7 1","pages":"141 - 144"},"PeriodicalIF":0.5000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/coma-2020-0008","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Manifolds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/coma-2020-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

Abstract

Abstract Serre’s duality theorem implies a symmetry between the Hodge numbers, hp,q = hn−p,n−q, on a compact complex n–manifold. Equivalently, the first page of the associated Frölicher spectral sequence satisfies dimE1p,q=dimE1n−p,n−q \dim E_1^{p,q} = \dim E_1^{n - p,n - q} for all p, q. Adapting an argument of Chern, Hirzebruch, and Serre [3] in an obvious way, in this short note we observe that this “Serre symmetry” dimEkp,q=dimEkn−p,n−q \dim E_k^{p,q} = \dim E_k^{n - p,n - q} holds on all subsequent pages of the spectral sequence as well. The argument shows that an analogous statement holds for the Frölicher spectral sequence of an almost complex structure on a nilpotent real Lie group as considered by Cirici and Wilson in [4].
在Frölicher光谱序列中Serre对称性的另一个持久性证明
摘要Serre对偶定理暗示了紧致复n–流形上Hodge数hp,q=hn−p,n−q之间的对称性。等价地,相关Frölicher谱序列的第一页满足所有p,q的dimE1p,q=dimE1n−p,n−q\dim E_1^{p,q}=\dim E_1 ^{n-p,n-q}。以一种明显的方式改编Chern、Hirzebruch和Serre[3]的论点,在这个简短的注释中,我们观察到这种“Serre对称性”dimEkp,q=dimEkn−p,n−q\dim E_k^{p,q}=\dim E_k ^{n-p,n-q}在谱序列的所有后续页上也成立。该论点表明,Cirici和Wilson在[4]中考虑的幂零实李群上几乎复杂结构的Frölicher谱序列也有类似的说法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Complex Manifolds
Complex Manifolds MATHEMATICS-
CiteScore
1.30
自引率
20.00%
发文量
14
审稿时长
25 weeks
期刊介绍: Complex Manifolds is devoted to the publication of results on these and related topics: Hermitian geometry, Kähler and hyperkähler geometry Calabi-Yau metrics, PDE''s on complex manifolds Generalized complex geometry Deformations of complex structures Twistor theory Geometric flows on complex manifolds Almost complex geometry Quaternionic geometry Geometric theory of analytic functions Holomorphic dynamics Several complex variables Dolbeault cohomology CR geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信