Coefficient Systems on the Bruhat-Tits Building and Pro-𝑝 Iwahori-Hecke Modules

IF 2 4区 数学 Q1 MATHEMATICS
Jan Kohlhaase
{"title":"Coefficient Systems on the Bruhat-Tits Building and Pro-𝑝 Iwahori-Hecke Modules","authors":"Jan Kohlhaase","doi":"10.1090/memo/1374","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be the group of rational points of a split connected reductive group over a nonarchimedean local field of residue characteristic <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper I\">\n <mml:semantics>\n <mml:mi>I</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">I</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be a pro-<inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> Iwahori subgroup of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\">\n <mml:semantics>\n <mml:mi>R</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">R</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be a commutative quasi-Frobenius ring. If <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H equals upper R left-bracket upper I minus upper G slash upper I right-bracket\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>H</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mi>R</mml:mi>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mi>I</mml:mi>\n <mml:mi class=\"MJX-variant\" mathvariant=\"normal\">∖<!-- ∖ --></mml:mi>\n <mml:mi>G</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mi>I</mml:mi>\n <mml:mo stretchy=\"false\">]</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">H=R[I\\backslash G/I]</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> denotes the pro-<inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> Iwahori-Hecke algebra of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> over <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\">\n <mml:semantics>\n <mml:mi>R</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">R</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> we clarify the relation between the category of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H\">\n <mml:semantics>\n <mml:mi>H</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">H</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-modules and the category of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-equivariant coefficient systems on the semisimple Bruhat-Tits building of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. If <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\">\n <mml:semantics>\n <mml:mi>R</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">R</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a field of characteristic zero this yields alternative proofs of the exactness of the Schneider-Stuhler resolution and of the Zelevinski conjecture for smooth <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-representations generated by their <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper I\">\n <mml:semantics>\n <mml:mi>I</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">I</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-invariants. In general, it gives a description of the derived category of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H\">\n <mml:semantics>\n <mml:mi>H</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">H</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-modules in terms of smooth <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-representations and yields a functor to generalized <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis phi comma normal upper Gamma right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>φ<!-- φ --></mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(\\varphi ,\\Gamma )</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-modules extending the constructions of Colmez, Schneider and Vignéras.</p>","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2018-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memoirs of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1374","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Let G G be the group of rational points of a split connected reductive group over a nonarchimedean local field of residue characteristic p p . Let I I be a pro- p p Iwahori subgroup of G G and let R R be a commutative quasi-Frobenius ring. If H = R [ I G / I ] H=R[I\backslash G/I] denotes the pro- p p Iwahori-Hecke algebra of G G over R R we clarify the relation between the category of H H -modules and the category of G G -equivariant coefficient systems on the semisimple Bruhat-Tits building of G G . If R R is a field of characteristic zero this yields alternative proofs of the exactness of the Schneider-Stuhler resolution and of the Zelevinski conjecture for smooth G G -representations generated by their I I -invariants. In general, it gives a description of the derived category of H H -modules in terms of smooth G G -representations and yields a functor to generalized ( φ , Γ ) (\varphi ,\Gamma ) -modules extending the constructions of Colmez, Schneider and Vignéras.

Bruhat-Tits建筑和Pro-𝑝Iwahori-Hecke模块的系数系统
设G G是残数特征为p p的非阿基米德局部域上的分裂连通还原群的有理点群。设I I是G G的一个pro-p-Iwahori子群,设R R是一个可交换的拟Frobenius环。如果H=R[I∖G/I]H=R[I\反斜线G/I]表示R上G的亲p Iwahori-Hecke代数,则我们在半单Bruhat-Tits构造上澄清了H-模的范畴与G的G-等变系数系统的范畴之间的关系G G。如果R R是一个特征为零的域,这就产生了Schneider Stuhler分辨率和Zelevenski猜想的精确性的替代证明,这些精确性是由它们的I I-不变量生成的光滑G-G-表示的。一般来说,它用光滑的G-表示描述了H-模的导出范畴,并给出了推广Colmez、Schneider和Vignéras构造的广义(φ,Γ)(\varphi,\Gamma)模的函子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.50
自引率
5.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: Memoirs of the American Mathematical Society is devoted to the publication of research in all areas of pure and applied mathematics. The Memoirs is designed particularly to publish long papers or groups of cognate papers in book form, and is under the supervision of the Editorial Committee of the AMS journal Transactions of the AMS. To be accepted by the editorial board, manuscripts must be correct, new, and significant. Further, they must be well written and of interest to a substantial number of mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信