Using a run time assurance approach for certifying autonomy within naval aviation

IF 1.6 3区 工程技术 Q4 ENGINEERING, INDUSTRIAL
Donald H. Costello, Huan Xu
{"title":"Using a run time assurance approach for certifying autonomy within naval aviation","authors":"Donald H. Costello, Huan Xu","doi":"10.1002/sys.21654","DOIUrl":null,"url":null,"abstract":"The methods and procedures within United States naval aviation to certify an aircraft safe for flight are well established. However, these methods and procedures are based on clearing a system that is operated or monitored by a human. A fully autonomous system will not have a human in or on the loop and will therefore require a new method for certifying it safe for flight. This paper details how to use run time assurance as the framework for a safety of flight certification of autonomous behavior within United States naval aviation. We present an aerial refueling task with run time assurance as use case for the framework for certification. Within the use case we then give more details on the mechanics of using RTA to enable autonomous functionality within naval aviation.","PeriodicalId":54439,"journal":{"name":"Systems Engineering","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/sys.21654","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 5

Abstract

The methods and procedures within United States naval aviation to certify an aircraft safe for flight are well established. However, these methods and procedures are based on clearing a system that is operated or monitored by a human. A fully autonomous system will not have a human in or on the loop and will therefore require a new method for certifying it safe for flight. This paper details how to use run time assurance as the framework for a safety of flight certification of autonomous behavior within United States naval aviation. We present an aerial refueling task with run time assurance as use case for the framework for certification. Within the use case we then give more details on the mechanics of using RTA to enable autonomous functionality within naval aviation.
使用运行时保证方法来证明海军航空兵的自主性
美国海军航空兵内部认证飞机安全飞行的方法和程序已经确立。然而,这些方法和程序是基于清除由人类操作或监控的系统。一个完全自主的系统不会有人在回路中,因此需要一种新的方法来证明其飞行安全。本文详细介绍了如何使用运行时间保证作为美国海军航空兵自主行为飞行安全认证的框架。我们提出了一个具有运行时间保证的空中加油任务,作为认证框架的用例。在用例中,我们将详细介绍使用RTA在海军航空兵中实现自主功能的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Systems Engineering
Systems Engineering 工程技术-工程:工业
CiteScore
5.10
自引率
20.00%
发文量
0
审稿时长
6 months
期刊介绍: Systems Engineering is a discipline whose responsibility it is to create and operate technologically enabled systems that satisfy stakeholder needs throughout their life cycle. Systems engineers reduce ambiguity by clearly defining stakeholder needs and customer requirements, they focus creativity by developing a system’s architecture and design and they manage the system’s complexity over time. Considerations taken into account by systems engineers include, among others, quality, cost and schedule, risk and opportunity under uncertainty, manufacturing and realization, performance and safety during operations, training and support, as well as disposal and recycling at the end of life. The journal welcomes original submissions in the field of Systems Engineering as defined above, but also encourages contributions that take an even broader perspective including the design and operation of systems-of-systems, the application of Systems Engineering to enterprises and complex socio-technical systems, the identification, selection and development of systems engineers as well as the evolution of systems and systems-of-systems over their entire lifecycle. Systems Engineering integrates all the disciplines and specialty groups into a coordinated team effort forming a structured development process that proceeds from concept to realization to operation. Increasingly important topics in Systems Engineering include the role of executable languages and models of systems, the concurrent use of physical and virtual prototyping, as well as the deployment of agile processes. Systems Engineering considers both the business and the technical needs of all stakeholders with the goal of providing a quality product that meets the user needs. Systems Engineering may be applied not only to products and services in the private sector but also to public infrastructures and socio-technical systems whose precise boundaries are often challenging to define.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信