On locally compact shift-continuous topologies on the α-bicyclic monoid

Q3 Mathematics
S. Bardyla
{"title":"On locally compact shift-continuous topologies on the α-bicyclic monoid","authors":"S. Bardyla","doi":"10.1515/taa-2018-0003","DOIUrl":null,"url":null,"abstract":"Abstract A topology τ on a monoid S is called shift-continuous if for every a, b ∈ S the two-sided shift S → S, x ↦ axb, is continuous. For every ordinal α ≤ ω, we describe all shift-continuous locally compact Hausdorff topologies on the α-bicyclic monoid Bα. More precisely, we prove that the lattice of shift-continuous locally compact Hausdorff topologies on Bα is anti-isomorphic to the segment of [1, α] of ordinals, endowed with the natural well-order. Also we prove that for each ordinal α the α + 1-bicyclic monoid Bα+1 is isomorphic to the Bruck extension of the α-bicyclic monoid Bα.","PeriodicalId":30611,"journal":{"name":"Topological Algebra and its Applications","volume":"6 1","pages":"34 - 42"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/taa-2018-0003","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topological Algebra and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/taa-2018-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 7

Abstract

Abstract A topology τ on a monoid S is called shift-continuous if for every a, b ∈ S the two-sided shift S → S, x ↦ axb, is continuous. For every ordinal α ≤ ω, we describe all shift-continuous locally compact Hausdorff topologies on the α-bicyclic monoid Bα. More precisely, we prove that the lattice of shift-continuous locally compact Hausdorff topologies on Bα is anti-isomorphic to the segment of [1, α] of ordinals, endowed with the natural well-order. Also we prove that for each ordinal α the α + 1-bicyclic monoid Bα+1 is isomorphic to the Bruck extension of the α-bicyclic monoid Bα.
α-双环单群上的局部紧移-连续拓扑
摘要:如果对于每一个A, b∈S,双侧位移S→S, x∈axb是连续的,则称单oid S上的拓扑τ为平移连续。对于每一个序数α≤ω,我们描述了α-双环单群Bα上所有移位连续的局部紧致Hausdorff拓扑。更确切地说,我们证明了Bα上位移连续局部紧化Hausdorff拓扑的格与赋有自然良序的序数的[1,α]段是反同构的。同时证明了对于每一个序数α α+1 -双环单群Bα+1与α-双环单群Bα的Bruck扩展是同构的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Topological Algebra and its Applications
Topological Algebra and its Applications Mathematics-Algebra and Number Theory
CiteScore
1.20
自引率
0.00%
发文量
12
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信