Polynomially-bounded Dehn functions of groups

IF 0.6 2区 数学 Q3 MATHEMATICS
A. Olshanskii
{"title":"Polynomially-bounded Dehn functions of groups","authors":"A. Olshanskii","doi":"10.4171/JCA/2-4-1","DOIUrl":null,"url":null,"abstract":"On the one hand, it is well known that the only subquadratic Dehn function of finitely presented groups is the linear one. On the other hand there is a huge class of Dehn functions $d(n)$ with growth at least $n^4$ (essentially all possible such Dehn functions) constructed in \\cite{SBR} and based on the time functions of Turing machines and S-machines. The class of Dehn functions $n^{\\alpha}$ with $\\alpha\\in (2; 4)$ remained more mysterious even though it has attracted quite a bit of attention (see, for example, \\cite{BB}). We fill the gap obtaining Dehn functions of the form $n^{\\alpha}$ (and much more) for all real $\\alpha\\ge 2$ computable in reasonable time, for example, $\\alpha=\\pi$ or $\\alpha= e$, or $\\alpha$ is any algebraic number. As in \\cite{SBR}, we use S-machines but new tools and new way of proof are needed for the best possible lower bound $d(n)\\ge n^2$.","PeriodicalId":48483,"journal":{"name":"Journal of Combinatorial Algebra","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2017-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/JCA/2-4-1","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/JCA/2-4-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

Abstract

On the one hand, it is well known that the only subquadratic Dehn function of finitely presented groups is the linear one. On the other hand there is a huge class of Dehn functions $d(n)$ with growth at least $n^4$ (essentially all possible such Dehn functions) constructed in \cite{SBR} and based on the time functions of Turing machines and S-machines. The class of Dehn functions $n^{\alpha}$ with $\alpha\in (2; 4)$ remained more mysterious even though it has attracted quite a bit of attention (see, for example, \cite{BB}). We fill the gap obtaining Dehn functions of the form $n^{\alpha}$ (and much more) for all real $\alpha\ge 2$ computable in reasonable time, for example, $\alpha=\pi$ or $\alpha= e$, or $\alpha$ is any algebraic number. As in \cite{SBR}, we use S-machines but new tools and new way of proof are needed for the best possible lower bound $d(n)\ge n^2$.
群的多项式有界Dehn函数
一方面,众所周知,有限存在群的唯一次二次Dehn函数是线性的。另一方面,在图灵机和S-机的时间函数的基础上,在SBR中构造了一大类增长至少为$n^4$的Dehn函数$d(n)$(基本上所有可能的此类Dehn函数)。在(2;4)$中带有$\alpha\$的Dehn函数$n^{\alpha}$类仍然更加神秘,尽管它已经引起了相当多的关注(例如,参见\cite{BB})。我们填补了这一空白,获得了在合理时间内可计算的所有实数$\alpha\ge2$的形式为$n^{\alpha}$(以及更多)的Dehn函数,例如,$\alphar=\pi$或$\alphal=e$,或者$\alpha$是任何代数数。正如在{SBR}中一样,我们使用S-机,但需要新的工具和新的证明方法来获得最佳下界$d(n)\ge n^2$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信