Dynamics of a Delayed Epidemic Model with Beddington-Deangelis Incidence Rate and a Constant Infectious Period

Abdelali Raji Allah, H. Alaoui
{"title":"Dynamics of a Delayed Epidemic Model with Beddington-Deangelis Incidence Rate and a Constant Infectious Period","authors":"Abdelali Raji Allah, H. Alaoui","doi":"10.5890/jand.2020.12.001","DOIUrl":null,"url":null,"abstract":"In this paper, an SIR epidemic model with an infectious period and a non-linear Beddington-DeAngelis type incidence rate function is considered. The dynamics of this model depend on the reproduction number R0. Accurately, if R0 1, we see that the disease-free equilibrium is unstable and the endemic equilibrium is permanent and locally asymptotically stable and we give sufficient conditions for the global asymptotic stability of the endemic equilibrium.","PeriodicalId":30638,"journal":{"name":"International Journal of Mathematical Modelling Computations","volume":"9 1","pages":"83-100"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematical Modelling Computations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5890/jand.2020.12.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, an SIR epidemic model with an infectious period and a non-linear Beddington-DeAngelis type incidence rate function is considered. The dynamics of this model depend on the reproduction number R0. Accurately, if R0 1, we see that the disease-free equilibrium is unstable and the endemic equilibrium is permanent and locally asymptotically stable and we give sufficient conditions for the global asymptotic stability of the endemic equilibrium.
具有Beddington Deangelis发病率和恒定传染期的延迟流行病模型的动力学
本文考虑了一个具有传染期和非线性Beddington-DeAngelis型发病率函数的SIR流行病模型。该模型的动力学取决于再现次数R0。准确地说,如果R0 1,我们看到无病平衡是不稳定的,地方病平衡是永久的和局部渐近稳定的,我们给出了地方病平衡全局渐近稳定的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
15
审稿时长
28 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信