Fuzzy control of synchronous buck converters utilizing fuzzy inference system for renewable energy applications

Q2 Computer Science
Fredy H. Martínez, Holman Montiel, Fernando Martinez
{"title":"Fuzzy control of synchronous buck converters utilizing fuzzy inference system for renewable energy applications","authors":"Fredy H. Martínez, Holman Montiel, Fernando Martinez","doi":"10.11591/ijece.v13i5.pp5076-5090","DOIUrl":null,"url":null,"abstract":"In the present research, an innovative fuzzy control approach is developed specifically for synchronous buck converters utilized in renewable energy applications. The proposed control strategy effectively manages load changes, nonlinear loads, and input voltage variations while improving both stability and transient response. The method employs a fuzzy inference system (FIS) that integrates adaptive control, feedforward control, and multivariable control to guarantee optimal performance under a wide range of operating conditions. The design of the control scheme involves formulating a rule base connecting input variables to an output variable, which signifies the duty cycle of the switching signal. The rule base is configured to dynamically modify control rules and membership functions in accordance with load conditions, input voltage fluctuations, and other contributing factors. The performance of the control scheme is evaluated in comparison to conventional techniques, such as proportional integral derivative (PID) control. Results indicate that the advanced fuzzy control approach surpasses traditional methods in terms of voltage regulation, stability, and transient response, particularly when faced with variable load conditions and input voltage changes. As a result, this control scheme is highly compatible with renewable energy systems, encompassing solar and wind power installations where input voltage and load conditions may experience considerable fluctuations. This research highlights the potential of the proposed fuzzy control approach to significantly enhance the performance and reliability of renewable energy systems.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijece.v13i5.pp5076-5090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

In the present research, an innovative fuzzy control approach is developed specifically for synchronous buck converters utilized in renewable energy applications. The proposed control strategy effectively manages load changes, nonlinear loads, and input voltage variations while improving both stability and transient response. The method employs a fuzzy inference system (FIS) that integrates adaptive control, feedforward control, and multivariable control to guarantee optimal performance under a wide range of operating conditions. The design of the control scheme involves formulating a rule base connecting input variables to an output variable, which signifies the duty cycle of the switching signal. The rule base is configured to dynamically modify control rules and membership functions in accordance with load conditions, input voltage fluctuations, and other contributing factors. The performance of the control scheme is evaluated in comparison to conventional techniques, such as proportional integral derivative (PID) control. Results indicate that the advanced fuzzy control approach surpasses traditional methods in terms of voltage regulation, stability, and transient response, particularly when faced with variable load conditions and input voltage changes. As a result, this control scheme is highly compatible with renewable energy systems, encompassing solar and wind power installations where input voltage and load conditions may experience considerable fluctuations. This research highlights the potential of the proposed fuzzy control approach to significantly enhance the performance and reliability of renewable energy systems.
基于模糊推理系统的同步降压变换器模糊控制在可再生能源应用中的应用
在本研究中,针对可再生能源应用中的同步降压变换器,开发了一种创新的模糊控制方法。所提出的控制策略能有效地管理负载变化、非线性负载和输入电压变化,同时提高系统的稳定性和暂态响应。该方法采用模糊推理系统(FIS),集自适应控制、前馈控制和多变量控制于一体,保证了系统在各种工况下的最优性能。控制方案的设计包括建立一个连接输入变量和输出变量的规则库,该规则库表示开关信号的占空比。规则库被配置为根据负载条件、输入电压波动和其他影响因素动态修改控制规则和隶属函数。并与传统的比例积分微分(PID)控制方法进行了比较。结果表明,先进的模糊控制方法在电压调节、稳定性和暂态响应方面优于传统方法,特别是在面对可变负载条件和输入电压变化时。因此,该控制方案与可再生能源系统高度兼容,包括输入电压和负载条件可能经历相当大波动的太阳能和风能发电装置。这项研究强调了所提出的模糊控制方法在显著提高可再生能源系统性能和可靠性方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Electrical and Computer Engineering
International Journal of Electrical and Computer Engineering Computer Science-Computer Science (all)
CiteScore
4.10
自引率
0.00%
发文量
177
期刊介绍: International Journal of Electrical and Computer Engineering (IJECE) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: -Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation, Medical Imaging Equipment and Techniques, Biomedical Imaging and Image Processing, Biomechanics and Rehabilitation Engineering, Biomaterials and Drug Delivery Systems; -Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction, Electromagnetic Compatibility, High Voltage Insulation Technologies, High Voltage Apparatuses, Lightning Detection and Protection, Power System Analysis, SCADA, Electrical Measurements; -Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging, Distributed Platform, Communication Network and Systems, Telematics Services and Security Network; -Control[...] -Computer and Informatics[...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信