{"title":"Powder flowability characterisation at preheating temperature in additive manufacturing","authors":"Jiangtao Zhang, Peng Liu","doi":"10.1080/00325899.2023.2225953","DOIUrl":null,"url":null,"abstract":"ABSTRACT The powder spreading process is usually performed at preheating temperature in powder-bed-based additive manufacturing (AM). Thus, the powder flowability characterisation at preheating temperature is important for powder spreading processes. However, devices for traditional powder flowability characterising methods are mainly designed for specific conditions at room temperature and cannot consider the effect of temperature on powder flowability. In this work, an experimental platform with a heated rotating drum was set up and a high-speed camera was used to record powder avalanche processes in a heated rotating drum for the powder flowability characterisation at preheating temperature. Nylon and stainless steel powder flowability at different temperatures was assessed by the statistical analysis of avalanche angle, avalanche time, arithmetic mean deviation and surface linearity of powder surface profile. Four parameters provide a good characterisation of powder flowability. The results can provide guidance for the powder flowability characterisation method at preheating temperature in AM.","PeriodicalId":20392,"journal":{"name":"Powder Metallurgy","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/00325899.2023.2225953","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT The powder spreading process is usually performed at preheating temperature in powder-bed-based additive manufacturing (AM). Thus, the powder flowability characterisation at preheating temperature is important for powder spreading processes. However, devices for traditional powder flowability characterising methods are mainly designed for specific conditions at room temperature and cannot consider the effect of temperature on powder flowability. In this work, an experimental platform with a heated rotating drum was set up and a high-speed camera was used to record powder avalanche processes in a heated rotating drum for the powder flowability characterisation at preheating temperature. Nylon and stainless steel powder flowability at different temperatures was assessed by the statistical analysis of avalanche angle, avalanche time, arithmetic mean deviation and surface linearity of powder surface profile. Four parameters provide a good characterisation of powder flowability. The results can provide guidance for the powder flowability characterisation method at preheating temperature in AM.
期刊介绍:
Powder Metallurgy is an international journal publishing peer-reviewed original research on the science and practice of powder metallurgy and particulate technology. Coverage includes metallic particulate materials, PM tool materials, hard materials, composites, and novel powder based materials.