A prey-predator system with herd behaviour of prey in a rapidly fluctuating environment

IF 0.4 Q4 MATHEMATICS, APPLIED
G. Samanta, A. Mondal, D. Sahoo, P. Dolai
{"title":"A prey-predator system with herd behaviour of prey in a rapidly fluctuating environment","authors":"G. Samanta, A. Mondal, D. Sahoo, P. Dolai","doi":"10.5206/mase/8196","DOIUrl":null,"url":null,"abstract":"A statistical theory of non-equilibrium fluctuation in damped Volterra-Lotka prey-predator system where prey population lives in herd in a rapidly fluctuating random environment has been presented. The method is based on the technique of perturbation approximation of non-linear coupled stochastic differential equations. The characteristic of group-living of prey population has been emphasized using square root of prey density in the functional response.","PeriodicalId":93797,"journal":{"name":"Mathematics in applied sciences and engineering","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2019-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics in applied sciences and engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5206/mase/8196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

A statistical theory of non-equilibrium fluctuation in damped Volterra-Lotka prey-predator system where prey population lives in herd in a rapidly fluctuating random environment has been presented. The method is based on the technique of perturbation approximation of non-linear coupled stochastic differential equations. The characteristic of group-living of prey population has been emphasized using square root of prey density in the functional response.
在快速波动的环境中具有群体行为的捕食系统
本文提出了一种快速波动随机环境中猎物群居的阻尼Volterra-Lotka捕食系统的非平衡涨落的统计理论。该方法基于非线性耦合随机微分方程的摄动逼近技术。在功能响应中,利用猎物密度的平方根强调了猎物群体生活的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
0
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信