{"title":"Integers as Sums of Four Tetrahedral Numbers and Eight Pentatope Numbers in One Identity","authors":"Benjamin Lee Warren","doi":"10.1080/00029890.2023.2199652","DOIUrl":null,"url":null,"abstract":"In 1850, Frederick Pollock [1] conjectured that every positive integer can be written as the sum of at most five tetrahedral numbers, where the nth tetrahedral number is given by Tn = 6n(n + 1)(n + 2). Earlier this year, Vadim Ponomarenko solved the weak version of Pollock’s conjecture [2] as Tn − Tn−1 − Tn−1 + Tn−2 = n. This solution is weak in the sense that it includes subtraction as well as addition instead of only addition. The following identity is a generalization of his solution at a = 2 and k = 1.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/00029890.2023.2199652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In 1850, Frederick Pollock [1] conjectured that every positive integer can be written as the sum of at most five tetrahedral numbers, where the nth tetrahedral number is given by Tn = 6n(n + 1)(n + 2). Earlier this year, Vadim Ponomarenko solved the weak version of Pollock’s conjecture [2] as Tn − Tn−1 − Tn−1 + Tn−2 = n. This solution is weak in the sense that it includes subtraction as well as addition instead of only addition. The following identity is a generalization of his solution at a = 2 and k = 1.