{"title":"Estimation of Significant Wave Height From X-Band Marine Radar Images Based on Ensemble Empirical Mode Decomposition","authors":"Xinlong Liu, Weimin Huang, E. Gill","doi":"10.1109/LGRS.2017.2733538","DOIUrl":null,"url":null,"abstract":"In this letter, an ensemble empirical mode decomposition (EEMD)-based method is proposed to estimate significant wave height (SWH) from the X-band marine radar sea surface images. First, the data sequence in each radial direction of a radar subimage is decomposed by the EEMD into several intrinsic mode functions (IMFs). A normalization scheme is then applied to the IMFs to obtain their amplitude modulation components. Finally, by adopting a linear model, the SWH is estimated from the sum of the amplitudes from the second to the fifth modes. The method is tested using radar and buoy data collected in a sea trial off the east coast of Canada. The root-mean-square differences with respect to the buoy reference for the SWH estimations using the traditional signal-to-noise-based method, a recent shadowing-based method, and the proposed technique are 0.78, 0.48, and 0.36 m, respectively. The result indicates that the proposed technique produces improvement in the SWH measurements.","PeriodicalId":13046,"journal":{"name":"IEEE Geoscience and Remote Sensing Letters","volume":"14 1","pages":"1740-1744"},"PeriodicalIF":4.0000,"publicationDate":"2017-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/LGRS.2017.2733538","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Geoscience and Remote Sensing Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/LGRS.2017.2733538","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 26
Abstract
In this letter, an ensemble empirical mode decomposition (EEMD)-based method is proposed to estimate significant wave height (SWH) from the X-band marine radar sea surface images. First, the data sequence in each radial direction of a radar subimage is decomposed by the EEMD into several intrinsic mode functions (IMFs). A normalization scheme is then applied to the IMFs to obtain their amplitude modulation components. Finally, by adopting a linear model, the SWH is estimated from the sum of the amplitudes from the second to the fifth modes. The method is tested using radar and buoy data collected in a sea trial off the east coast of Canada. The root-mean-square differences with respect to the buoy reference for the SWH estimations using the traditional signal-to-noise-based method, a recent shadowing-based method, and the proposed technique are 0.78, 0.48, and 0.36 m, respectively. The result indicates that the proposed technique produces improvement in the SWH measurements.
期刊介绍:
IEEE Geoscience and Remote Sensing Letters (GRSL) is a monthly publication for short papers (maximum length 5 pages) addressing new ideas and formative concepts in remote sensing as well as important new and timely results and concepts. Papers should relate to the theory, concepts and techniques of science and engineering as applied to sensing the earth, oceans, atmosphere, and space, and the processing, interpretation, and dissemination of this information. The technical content of papers must be both new and significant. Experimental data must be complete and include sufficient description of experimental apparatus, methods, and relevant experimental conditions. GRSL encourages the incorporation of "extended objects" or "multimedia" such as animations to enhance the shorter papers.