On the Compatible Sets Expansion of the Tutte Polynomial

Pub Date : 2023-06-30 DOI:10.1007/s00026-023-00657-z
Laura Pierson
{"title":"On the Compatible Sets Expansion of the Tutte Polynomial","authors":"Laura Pierson","doi":"10.1007/s00026-023-00657-z","DOIUrl":null,"url":null,"abstract":"<div><p>Kochol [6] gave a new expansion formula for the Tutte polynomial of a matroid using the notion of <i>compatible sets</i>, and asked how this expansion relates to the internal-external activities formula. Here, we provide an answer, which is obtained as a special case of a generalized version of the expansion formula to Las Vergnas’s trivariate Tutte polynomials of matroid perspectives [10]. The same generalization to matroid perspectives and bijection with activities have been independently proven by Kochol in [5] and [7] in parallel with this work, but using different methods. Kochol proves both results recursively using the contraction-deletion relations, whereas we give a more direct proof of the bijection and use that to deduce the compatible sets expansion formula from Las Vergnas’s activities expansion.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00026-023-00657-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Kochol [6] gave a new expansion formula for the Tutte polynomial of a matroid using the notion of compatible sets, and asked how this expansion relates to the internal-external activities formula. Here, we provide an answer, which is obtained as a special case of a generalized version of the expansion formula to Las Vergnas’s trivariate Tutte polynomials of matroid perspectives [10]. The same generalization to matroid perspectives and bijection with activities have been independently proven by Kochol in [5] and [7] in parallel with this work, but using different methods. Kochol proves both results recursively using the contraction-deletion relations, whereas we give a more direct proof of the bijection and use that to deduce the compatible sets expansion formula from Las Vergnas’s activities expansion.

Abstract Image

Abstract Image

分享
查看原文
关于Tutte多项式的相容集展开
Kochol [6]利用兼容集的概念给出了矩阵的 Tutte 多项式的新展开式,并提出了这一展开式与内部-外部活动式之间的关系。在这里,我们给出了答案,它是 Las Vergnas 的矩阵视角三变量 Tutte 多项式的扩展公式的广义版本的特例[10]。与这项工作平行,Kochol 在 [5] 和 [7] 中独立证明了对 matroid 透视图的相同广义化和与活动的双射,但使用的方法不同。Kochol 利用收缩-删除关系递归证明了这两个结果,而我们则更直接地证明了双射,并利用双射从 Las Vergnas 的活动展开推导出了兼容集展开公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信