The Riemannian Penrose inequality for asymptotically flat manifolds with non-compact boundary

IF 1.3 1区 数学 Q1 MATHEMATICS
T. Koerber
{"title":"The Riemannian Penrose inequality for asymptotically flat manifolds with non-compact boundary","authors":"T. Koerber","doi":"10.4310/jdg/1686931603","DOIUrl":null,"url":null,"abstract":"In this article, we prove the Riemannian Penrose inequality for asymptotically flat manifolds with non-compact boundary whose asymptotic region is modelled on a half-space. Such spaces were initially considered by Almaraz, Barbosa and de Lima in 2014. In order to prove the inequality, we develop a new approximation scheme for the weak free boundary inverse mean curvature flow, introduced by Marquardt in 2012, and establish the monotonicity of a free boundary version of the Hawking mass. Our result also implies a non-optimal Penrose inequality for asymptotically flat support surfaces in $\\mathbb{R}^3$ and thus sheds some light on a conjecture made by Huisken.","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2019-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jdg/1686931603","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

Abstract

In this article, we prove the Riemannian Penrose inequality for asymptotically flat manifolds with non-compact boundary whose asymptotic region is modelled on a half-space. Such spaces were initially considered by Almaraz, Barbosa and de Lima in 2014. In order to prove the inequality, we develop a new approximation scheme for the weak free boundary inverse mean curvature flow, introduced by Marquardt in 2012, and establish the monotonicity of a free boundary version of the Hawking mass. Our result also implies a non-optimal Penrose inequality for asymptotically flat support surfaces in $\mathbb{R}^3$ and thus sheds some light on a conjecture made by Huisken.
非紧边渐近平面流形的黎曼彭罗斯不等式
本文证明了具有非紧边界的渐近平面流形的黎曼彭罗斯不等式,该流形的渐近区域在半空间上建模。这种空间最初是由Almaraz、Barbosa和de Lima在2014年提出的。为了证明该不等式,我们对Marquardt(2012)引入的弱自由边界逆平均曲率流提出了一种新的近似格式,并建立了霍金质量自由边界版本的单调性。我们的结果也暗示了$\mathbb{R}^3$中渐近平坦支撑面的非最优Penrose不等式,从而对Huisken的一个猜想有所启发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信