Mathematical model for acquiring immunity to malaria: a PDE approach

Q2 Agricultural and Biological Sciences
S. Tchoumi, Y. T. Kouakep, D. Fotsa, F. G. T. Kamba, J. Kamgang, D. Houpa
{"title":"Mathematical model for acquiring immunity to malaria: a PDE approach","authors":"S. Tchoumi, Y. T. Kouakep, D. Fotsa, F. G. T. Kamba, J. Kamgang, D. Houpa","doi":"10.11145/j.biomath.2021.07.227","DOIUrl":null,"url":null,"abstract":"We develop a new model of integro-differential equations coupled with a partial differential equation that focuses on the study of the? naturally acquiring immunity to malaria induced by exposure to infection. We analyze a continuous acquisition of immunity after infected individuals are treated. It exhibits complex and realistic mechanisms precised mathematically in both disease free or endemic context and in several numerical simulations showing the interplay between infection through the bite of mosquitoes. The model confirms the (partial) premunition of the human population in the regions where malaria is endemic. As common in literature, we indicate an equivalence of the basic reproduction rate as the spectral radius of a next generation operator.","PeriodicalId":52247,"journal":{"name":"Biomath","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomath","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11145/j.biomath.2021.07.227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 1

Abstract

We develop a new model of integro-differential equations coupled with a partial differential equation that focuses on the study of the? naturally acquiring immunity to malaria induced by exposure to infection. We analyze a continuous acquisition of immunity after infected individuals are treated. It exhibits complex and realistic mechanisms precised mathematically in both disease free or endemic context and in several numerical simulations showing the interplay between infection through the bite of mosquitoes. The model confirms the (partial) premunition of the human population in the regions where malaria is endemic. As common in literature, we indicate an equivalence of the basic reproduction rate as the spectral radius of a next generation operator.
获得疟疾免疫力的数学模型:PDE方法
我们建立了一个新的积分-微分方程与偏微分方程耦合的模型,重点研究了?因接触感染而自然获得对疟疾的免疫力。我们分析了感染者在接受治疗后持续获得免疫力的情况。它展示了复杂和现实的机制,无论是在无病或地方病的情况下,还是在几个数值模拟中,都精确地显示了通过蚊子叮咬感染之间的相互作用。该模型证实了疟疾流行地区人口的(部分)免疫。与文献中常见的一样,我们将基本繁殖率等效为下一代算子的谱半径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomath
Biomath Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
2.20
自引率
0.00%
发文量
6
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信