Forbidden Subgraphs for Existences of (Connected) 2-Factors of a Graph

Pub Date : 2022-11-25 DOI:10.7151/dmgt.2366
Xiaojing Yang, Liming Xiong
{"title":"Forbidden Subgraphs for Existences of (Connected) 2-Factors of a Graph","authors":"Xiaojing Yang, Liming Xiong","doi":"10.7151/dmgt.2366","DOIUrl":null,"url":null,"abstract":"Abstract Clearly, having a 2-factor in a graph is a necessary condition for a graph to be hamiltonian, while having an even factor in graph is a necessary condition for a graph to have a 2-factor. In this paper, we completely characterize the forbidden subgraph and pairs of forbidden subgraphs that force a 2-connected graph admitting a 2-factor (a necessary condition) to be hamiltonian and a connected graph with an even factor (a necessary condition) to have a 2-factor, respectively. Our results show that these pairs of forbidden subgraphs become wider than those in Faudree, Gould and in Fujisawa, Saito, respectively, if we impose the two necessary conditions, respectively.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7151/dmgt.2366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Clearly, having a 2-factor in a graph is a necessary condition for a graph to be hamiltonian, while having an even factor in graph is a necessary condition for a graph to have a 2-factor. In this paper, we completely characterize the forbidden subgraph and pairs of forbidden subgraphs that force a 2-connected graph admitting a 2-factor (a necessary condition) to be hamiltonian and a connected graph with an even factor (a necessary condition) to have a 2-factor, respectively. Our results show that these pairs of forbidden subgraphs become wider than those in Faudree, Gould and in Fujisawa, Saito, respectively, if we impose the two necessary conditions, respectively.
分享
查看原文
图的(连通)2因子存在的禁止子图
显然,图中存在2因子是图为哈密顿函数的必要条件,而图中存在偶因子是图为2因子的必要条件。在本文中,我们分别完整地刻画了强迫含有2因子的2连通图(必要条件)为哈密顿量和含有偶因子的2连通图(必要条件)为2因子的禁止子图和禁止子图对。我们的结果表明,如果我们分别施加两个必要条件,这些禁止子图对分别比Faudree, Gould和Fujisawa, Saito中的禁止子图对更宽。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信