Extreme learning machine and K-means clustering for the improvement of link prediction in social networks using analytic hierarchy process

Q3 Business, Management and Accounting
Gowri Thangam Jeyaraj, A. Sankar
{"title":"Extreme learning machine and K-means clustering for the improvement of link prediction in social networks using analytic hierarchy process","authors":"Gowri Thangam Jeyaraj, A. Sankar","doi":"10.1504/ijenm.2019.10024740","DOIUrl":null,"url":null,"abstract":"The rapid growth of the availability of healthcare related data raises a challenge of extracting useful information. Thus there is an urgent need for the healthcare industry to predict the disease, that reduces the amount of cumbersome tests on patients The aim of this paper is to employ a combination of machine learning algorithms namely extreme learning machine algorithm with k-means clustering and analytic hierarchy process, for the prediction of disease in a patient through the extraction of different patterns from the dataset based on the relationships that exists among the attributes. It would help the physician and the medical scientists to predict the possibility of the disease. In today's era, the percentage of females getting affected by diabetes has increased exponentially. So, the experiments are carried over PIMA diabetes data set that focuses on females are extracted from UCI repository and the results are found to be significant.","PeriodicalId":39284,"journal":{"name":"International Journal of Enterprise Network Management","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Enterprise Network Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijenm.2019.10024740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 1

Abstract

The rapid growth of the availability of healthcare related data raises a challenge of extracting useful information. Thus there is an urgent need for the healthcare industry to predict the disease, that reduces the amount of cumbersome tests on patients The aim of this paper is to employ a combination of machine learning algorithms namely extreme learning machine algorithm with k-means clustering and analytic hierarchy process, for the prediction of disease in a patient through the extraction of different patterns from the dataset based on the relationships that exists among the attributes. It would help the physician and the medical scientists to predict the possibility of the disease. In today's era, the percentage of females getting affected by diabetes has increased exponentially. So, the experiments are carried over PIMA diabetes data set that focuses on females are extracted from UCI repository and the results are found to be significant.
极限学习机和K-means聚类在社会网络链接预测中的应用层次分析法
医疗保健相关数据可用性的快速增长提出了提取有用信息的挑战。因此,医疗保健行业迫切需要预测疾病,从而减少对患者的繁琐测试。本文的目的是采用机器学习算法的组合,即具有k均值聚类和层次分析过程的极限学习机器算法,用于通过基于属性之间存在的关系从数据集中提取不同模式来预测患者的疾病。这将有助于医生和医学科学家预测这种疾病的可能性。在当今时代,女性患糖尿病的比例呈指数级增长。因此,实验是在关注女性的PIMA糖尿病数据集上进行的,这些数据集是从UCI存储库中提取的,结果是显著的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Enterprise Network Management
International Journal of Enterprise Network Management Business, Management and Accounting-Management of Technology and Innovation
CiteScore
0.90
自引率
0.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信