{"title":"An overview of One and Two Carbon Homologation and Homologation-Functional Group Interconversion Reactions in Organic Synthesis","authors":"M. Gupta, Sharol Sebastian","doi":"10.2174/1570193x20666221116163819","DOIUrl":null,"url":null,"abstract":"\n\nThe extension of carbon chains, known as homologation, is one of the most fundamental operations of organic synthesis. One and two-carbon homologation reactions are of immense importance because they can be used for synthesizing members of a homologous series by iterative operations. Homologation reactions produce higher analogues of the same functional group, whereas homologation-functional group interconversion (FGI) generates higher analogues with a change in functionality. This general synthesis strategy may be counted for a number of reasons, such as higher accessibility to the successive homologs, a chance for the introduction of additional functionality, or solely to create a regular series of homologs. The advantages of homologation reactions could be measured by the efficiency, technical simplicity, and regio- and/or stereo-selectivity of the overall operations in a synthetic plan. Homologation reactions constitute powerful and versatile tools for preparative chemistry which uses different concepts underpinning the use of homologating reagents in addition to their applications in organic synthesis. A compilation and comparison of diverse methods available for homologation cum functional group interconversion will empower synthetic chemists to undertake studies that require a series of analogues. In this review, we have categorized and summarized such methods and synthetic applications of one and two-carbon homologation-functionalization of various functional groups in organic synthesis.\n","PeriodicalId":18632,"journal":{"name":"Mini-reviews in Organic Chemistry","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mini-reviews in Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/1570193x20666221116163819","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
The extension of carbon chains, known as homologation, is one of the most fundamental operations of organic synthesis. One and two-carbon homologation reactions are of immense importance because they can be used for synthesizing members of a homologous series by iterative operations. Homologation reactions produce higher analogues of the same functional group, whereas homologation-functional group interconversion (FGI) generates higher analogues with a change in functionality. This general synthesis strategy may be counted for a number of reasons, such as higher accessibility to the successive homologs, a chance for the introduction of additional functionality, or solely to create a regular series of homologs. The advantages of homologation reactions could be measured by the efficiency, technical simplicity, and regio- and/or stereo-selectivity of the overall operations in a synthetic plan. Homologation reactions constitute powerful and versatile tools for preparative chemistry which uses different concepts underpinning the use of homologating reagents in addition to their applications in organic synthesis. A compilation and comparison of diverse methods available for homologation cum functional group interconversion will empower synthetic chemists to undertake studies that require a series of analogues. In this review, we have categorized and summarized such methods and synthetic applications of one and two-carbon homologation-functionalization of various functional groups in organic synthesis.
期刊介绍:
Mini-Reviews in Organic Chemistry is a peer reviewed journal which publishes original reviews on all areas of organic chemistry including organic synthesis, bioorganic and medicinal chemistry, natural product chemistry, molecular recognition, and physical organic chemistry. The emphasis will be on publishing quality papers very rapidly, without any charges.
The journal encourages submission of reviews on emerging fields of organic chemistry including:
Bioorganic Chemistry
Carbohydrate Chemistry
Chemical Biology
Chemical Process Research
Computational Organic Chemistry
Development of Synthetic Methodologies
Functional Organic Materials
Heterocyclic Chemistry
Macromolecular Chemistry
Natural Products Isolation And Synthesis
New Synthetic Methodology
Organic Reactions
Organocatalysis
Organometallic Chemistry
Theoretical Organic Chemistry
Polymer Chemistry
Stereochemistry
Structural Investigations
Supramolecular Chemistry