P. Manik, A. Firdhaus, T. Tuswan, K. Kiryanto, Bagus Muhammad Ichsan
{"title":"Analysis of the tensile and bending strengths of the joints of “Gigantochloa apus” bamboo composite laminated boards with epoxy resin matrix","authors":"P. Manik, A. Firdhaus, T. Tuswan, K. Kiryanto, Bagus Muhammad Ichsan","doi":"10.1515/jmbm-2022-0276","DOIUrl":null,"url":null,"abstract":"Abstract The need for wood in the ship building industry continues to grow every year. An alternative raw material is needed to replace wood at a more affordable price, namely, bamboo laminated boards. However, bamboo has a weak connection between its segments, with a maximum length between components of less than 40 cm. To reduce these weaknesses, the connection between bamboo segments with laminated boards is carried out as follows: scarf joint, butt joint, finger joint, desk joint, and tongue and groove joint. The study aims to determine the connection’s effect on each connection variation’s strength. Tensile tests and bending tests were carried out on the test specimens. The average results obtained were quite varied for the tensile test, which were in the range of 81.36–118.62 MPa, while the results of buckling test were in the range of 395.28–475.89 MPa. This study revealed that the connection of the specimen with seven layers had a value of 118.62 MPa in the tensile strength test and 475.89 MPa in the buckling strength test, while 3 layers finger joint samples with the lowest buckling tensile strength value had a value of 81.36 MPa tensile strength and 395.28 MPa bending strength.","PeriodicalId":17354,"journal":{"name":"Journal of the Mechanical Behavior of Materials","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jmbm-2022-0276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The need for wood in the ship building industry continues to grow every year. An alternative raw material is needed to replace wood at a more affordable price, namely, bamboo laminated boards. However, bamboo has a weak connection between its segments, with a maximum length between components of less than 40 cm. To reduce these weaknesses, the connection between bamboo segments with laminated boards is carried out as follows: scarf joint, butt joint, finger joint, desk joint, and tongue and groove joint. The study aims to determine the connection’s effect on each connection variation’s strength. Tensile tests and bending tests were carried out on the test specimens. The average results obtained were quite varied for the tensile test, which were in the range of 81.36–118.62 MPa, while the results of buckling test were in the range of 395.28–475.89 MPa. This study revealed that the connection of the specimen with seven layers had a value of 118.62 MPa in the tensile strength test and 475.89 MPa in the buckling strength test, while 3 layers finger joint samples with the lowest buckling tensile strength value had a value of 81.36 MPa tensile strength and 395.28 MPa bending strength.
期刊介绍:
The journal focuses on the micromechanics and nanomechanics of materials, the relationship between structure and mechanical properties, material instabilities and fracture, as well as size effects and length/time scale transitions. Articles on cutting edge theory, simulations and experiments – used as tools for revealing novel material properties and designing new devices for structural, thermo-chemo-mechanical, and opto-electro-mechanical applications – are encouraged. Synthesis/processing and related traditional mechanics/materials science themes are not within the scope of JMBM. The Editorial Board also organizes topical issues on emerging areas by invitation. Topics Metals and Alloys Ceramics and Glasses Soils and Geomaterials Concrete and Cementitious Materials Polymers and Composites Wood and Paper Elastomers and Biomaterials Liquid Crystals and Suspensions Electromagnetic and Optoelectronic Materials High-energy Density Storage Materials Monument Restoration and Cultural Heritage Preservation Materials Nanomaterials Complex and Emerging Materials.