Specht property for the algebra of upper triangular matrices of size two with a Taft’s algebra action

Pub Date : 2022-05-16 DOI:10.4153/S0008439522000327
L. Centrone, Alejandro Estrada
{"title":"Specht property for the algebra of upper triangular matrices of size two with a Taft’s algebra action","authors":"L. Centrone, Alejandro Estrada","doi":"10.4153/S0008439522000327","DOIUrl":null,"url":null,"abstract":"Abstract Let F be a field of characteristic zero, and let \n$UT_2$\n be the algebra of \n$2 \\times 2$\n upper triangular matrices over F. In a previous paper by Centrone and Yasumura, the authors give a description of the action of Taft’s algebras \n$H_m$\n on \n$UT_2$\n and its \n$H_m$\n -identities. In this paper, we give a complete description of the space of multilinear \n$H_m$\n -identities in the language of Young diagrams through the representation theory of the hyperoctahedral group. We finally prove that the variety of \n$H_m$\n -module algebras generated by \n$UT_2$\n has the Specht property, i.e., every \n$T^{H_m}$\n -ideal containing the \n$H_m$\n -identities of \n$UT_2$\n is finitely based.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4153/S0008439522000327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Let F be a field of characteristic zero, and let $UT_2$ be the algebra of $2 \times 2$ upper triangular matrices over F. In a previous paper by Centrone and Yasumura, the authors give a description of the action of Taft’s algebras $H_m$ on $UT_2$ and its $H_m$ -identities. In this paper, we give a complete description of the space of multilinear $H_m$ -identities in the language of Young diagrams through the representation theory of the hyperoctahedral group. We finally prove that the variety of $H_m$ -module algebras generated by $UT_2$ has the Specht property, i.e., every $T^{H_m}$ -ideal containing the $H_m$ -identities of $UT_2$ is finitely based.
分享
查看原文
具有Taft代数作用的二阶上三角矩阵代数的Specht性质
摘要设F是特征零的域,设$UT_2$是F上的$2\乘2$上三角矩阵的代数。在Centrone和Yasumura以前的一篇论文中,作者描述了Taft代数$H_m$在$UT_2$上的作用及其$H_m$-恒等式。本文通过超八面体群的表示理论,用Young图的语言给出了多重线性$H_m$-恒等式空间的完整描述。我们最后证明了由$UT_2$生成的$H_m$-模代数的多样性具有Specht性质,即包含$UT_2$$H_m$恒等式的每个$T^{H_m}$-理想是有限基的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信