Carlos Caicedo-Montoya, Laura Pinilla, León F. Toro, Jeferyd Yepes-García, Rigoberto Ríos-Estepa
{"title":"Comparative Analysis of Strategies for De Novo Transcriptome Assembly in Prokaryotes: Streptomyces clavuligerus as a Case Study","authors":"Carlos Caicedo-Montoya, Laura Pinilla, León F. Toro, Jeferyd Yepes-García, Rigoberto Ríos-Estepa","doi":"10.3390/ht8040020","DOIUrl":null,"url":null,"abstract":"The performance of software tools for de novo transcriptome assembly greatly depends on the selection of software parameters. Up to now, the development of de novo transcriptome assembly for prokaryotes has not been as remarkable as that for eukaryotes. In this contribution, Rockhopper2 was used to perform a comparative transcriptome analysis of Streptomyces clavuligerus exposed to diverse environmental conditions. The study focused on assessing the incidence of software parameters on software performance for the identification of differentially expressed genes as a final goal. For this, a statistical optimization was performed using the Transrate Assembly Score (TAS). TAS was also used for evaluating the software performance and for comparing it with related tools, e.g., Trinity. Transcriptome redundancy and completeness were also considered for this analysis. Rockhopper2 and Trinity reached a TAS value of 0.55092 and 0.58337, respectively. Trinity assembles transcriptomes with high redundancy, with 55.6% of transcripts having some duplicates. Additionally, we observed that the total number of differentially expressed genes (DEG) and their annotation greatly depends on the method used for removing redundancy and the tools used for transcript quantification. To our knowledge, this is the first work aimed at assessing de novo assembly software for prokaryotic organisms.","PeriodicalId":53433,"journal":{"name":"High-Throughput","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3390/ht8040020","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High-Throughput","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ht8040020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 2
Abstract
The performance of software tools for de novo transcriptome assembly greatly depends on the selection of software parameters. Up to now, the development of de novo transcriptome assembly for prokaryotes has not been as remarkable as that for eukaryotes. In this contribution, Rockhopper2 was used to perform a comparative transcriptome analysis of Streptomyces clavuligerus exposed to diverse environmental conditions. The study focused on assessing the incidence of software parameters on software performance for the identification of differentially expressed genes as a final goal. For this, a statistical optimization was performed using the Transrate Assembly Score (TAS). TAS was also used for evaluating the software performance and for comparing it with related tools, e.g., Trinity. Transcriptome redundancy and completeness were also considered for this analysis. Rockhopper2 and Trinity reached a TAS value of 0.55092 and 0.58337, respectively. Trinity assembles transcriptomes with high redundancy, with 55.6% of transcripts having some duplicates. Additionally, we observed that the total number of differentially expressed genes (DEG) and their annotation greatly depends on the method used for removing redundancy and the tools used for transcript quantification. To our knowledge, this is the first work aimed at assessing de novo assembly software for prokaryotic organisms.
High-ThroughputBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.60
自引率
0.00%
发文量
0
审稿时长
9 weeks
期刊介绍:
High-Throughput (formerly Microarrays, ISSN 2076-3905) is a multidisciplinary peer-reviewed scientific journal that provides an advanced forum for the publication of studies reporting high-dimensional approaches and developments in Life Sciences, Chemistry and related fields. Our aim is to encourage scientists to publish their experimental and theoretical results based on high-throughput techniques as well as computational and statistical tools for data analysis and interpretation. The full experimental or methodological details must be provided so that the results can be reproduced. There is no restriction on the length of the papers. High-Throughput invites submissions covering several topics, including, but not limited to: -Microarrays -DNA Sequencing -RNA Sequencing -Protein Identification and Quantification -Cell-based Approaches -Omics Technologies -Imaging -Bioinformatics -Computational Biology/Chemistry -Statistics -Integrative Omics -Drug Discovery and Development -Microfluidics -Lab-on-a-chip -Data Mining -Databases -Multiplex Assays