Gong Cheng, Chunbo Lang, Maoxiong Wu, Xingxing Xie, Xiwen Yao, Junwei Han
{"title":"Feature Enhancement Network for Object Detection in Optical Remote Sensing Images","authors":"Gong Cheng, Chunbo Lang, Maoxiong Wu, Xingxing Xie, Xiwen Yao, Junwei Han","doi":"10.34133/2021/9805389","DOIUrl":null,"url":null,"abstract":"Automatic and robust object detection in remote sensing images is of vital significance in real-world applications such as land resource management and disaster rescue. However, poor performance arises when the state-of-the-art natural image detection algorithms are directly applied to remote sensing images, which largely results from the variations in object scale, aspect ratio, indistinguishable object appearances, and complex background scenario. In this paper, we propose a novel Feature Enhancement Network (FENet) for object detection in optical remote sensing images, which consists of a Dual Attention Feature Enhancement (DAFE) module and a Context Feature Enhancement (CFE) module. Specifically, the DAFE module is introduced to highlight the network to focus on the distinctive features of the objects of interest and suppress useless ones by jointly recalibrating the spatial and channel feature responses. The CFE module is designed to capture global context cues and selectively strengthen class-aware features by leveraging image-level contextual information that indicates the presence or absence of the object classes. To this end, we employ a context encoding loss to regularize the model training which promotes the object detector to understand the scene better and narrows the probable object categories in prediction. We achieve our proposed FENet by unifying DAFE and CFE into the framework of Faster R-CNN. In the experiments, we evaluate our proposed method on two large-scale remote sensing image object detection datasets including DIOR and DOTA and demonstrate its effectiveness compared with the baseline methods.","PeriodicalId":38304,"journal":{"name":"遥感学报","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"遥感学报","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.34133/2021/9805389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40
Abstract
Automatic and robust object detection in remote sensing images is of vital significance in real-world applications such as land resource management and disaster rescue. However, poor performance arises when the state-of-the-art natural image detection algorithms are directly applied to remote sensing images, which largely results from the variations in object scale, aspect ratio, indistinguishable object appearances, and complex background scenario. In this paper, we propose a novel Feature Enhancement Network (FENet) for object detection in optical remote sensing images, which consists of a Dual Attention Feature Enhancement (DAFE) module and a Context Feature Enhancement (CFE) module. Specifically, the DAFE module is introduced to highlight the network to focus on the distinctive features of the objects of interest and suppress useless ones by jointly recalibrating the spatial and channel feature responses. The CFE module is designed to capture global context cues and selectively strengthen class-aware features by leveraging image-level contextual information that indicates the presence or absence of the object classes. To this end, we employ a context encoding loss to regularize the model training which promotes the object detector to understand the scene better and narrows the probable object categories in prediction. We achieve our proposed FENet by unifying DAFE and CFE into the framework of Faster R-CNN. In the experiments, we evaluate our proposed method on two large-scale remote sensing image object detection datasets including DIOR and DOTA and demonstrate its effectiveness compared with the baseline methods.
遥感学报Social Sciences-Geography, Planning and Development
CiteScore
3.60
自引率
0.00%
发文量
3200
期刊介绍:
The predecessor of Journal of Remote Sensing is Remote Sensing of Environment, which was founded in 1986. It was born in the beginning of China's remote sensing career and is the first remote sensing journal that has grown up with the development of China's remote sensing career. Since its inception, the Journal of Remote Sensing has published a large number of the latest scientific research results in China and the results of nationally-supported research projects in the light of the priorities and needs of China's remote sensing endeavours at different times, playing a great role in the development of remote sensing science and technology and the cultivation of talents in China, and becoming the most influential academic journal in the field of remote sensing and geographic information science in China.
As the only national comprehensive academic journal in the field of remote sensing in China, Journal of Remote Sensing is dedicated to reporting the research reports, stage-by-stage research briefs and high-level reviews in the field of remote sensing and its related disciplines with international and domestic advanced level. It focuses on new concepts, results and progress in this field. It covers the basic theories of remote sensing, the development of remote sensing technology and the application of remote sensing in the fields of agriculture, forestry, hydrology, geology, mining, oceanography, mapping and other resource and environmental fields as well as in disaster monitoring, research on geographic information systems (GIS), and the integration of remote sensing with GIS and the Global Navigation Satellite System (GNSS) and its applications.