Global existence and blow up of positive initial energy solution of a quasilinear wave equation with nonlinear damping and source terms

IF 0.2 Q4 MATHEMATICS, APPLIED
P. A. Ogbiyele
{"title":"Global existence and blow up of positive initial energy solution of a quasilinear wave equation with nonlinear damping and source terms","authors":"P. A. Ogbiyele","doi":"10.1504/ijdsde.2020.10031332","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a quasilinearwave equation having nonlinear damping and source terms and obtained global existence and blow up results under certain polynomial growth conditions on the nonlinear functions σi, βi, (i = 1, 2, ..., n), f and g. We obtain global existence result for positive initial energy solution using Galerkin approximation procedure and nonexistence (blow up) result using the technique introduced by Georgiev and Todorova (1994) with little modification for our problem.","PeriodicalId":43101,"journal":{"name":"International Journal of Dynamical Systems and Differential Equations","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2020-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Dynamical Systems and Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijdsde.2020.10031332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we consider a quasilinearwave equation having nonlinear damping and source terms and obtained global existence and blow up results under certain polynomial growth conditions on the nonlinear functions σi, βi, (i = 1, 2, ..., n), f and g. We obtain global existence result for positive initial energy solution using Galerkin approximation procedure and nonexistence (blow up) result using the technique introduced by Georgiev and Todorova (1994) with little modification for our problem.
具有非线性阻尼和源项的拟线性波动方程的正初始能量解的整体存在性和爆破性
本文考虑一类具有非线性阻尼和源项的拟线性波动方程,得到了非线性函数σi, βi, (i = 1,2,…)在多项式生长条件下的整体存在性和爆破结果。, n), f和g。我们使用Galerkin近似法得到正初始能量解的整体存在性结果,使用Georgiev和Todorova(1994)引入的技术得到不存在(爆破)结果,对我们的问题做了很少的修改。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
16
期刊介绍: IJDSDE is a quarterly international journal that publishes original research papers of high quality in all areas related to dynamical systems and differential equations and their applications in biology, economics, engineering, physics, and other related areas of science. Manuscripts concerned with the development and application innovative mathematical tools and methods from dynamical systems and differential equations, are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信