{"title":"Machine learning based approach for the interpretation of engineering geophysical sounding logs","authors":"Armand Abordán, Norbert Péter Szabó","doi":"10.1007/s40328-021-00354-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a set of machine learning (ML) tools is applied to estimate the water saturation of shallow unconsolidated sediments at the Bátaapáti site in Hungary. Water saturation is directly calculated from the first factor extracted from a set of direct push logs by factor analysis. The dataset observed by engineering geophysical sounding tools as special variants of direct-push probes contains data from a total of 12 shallow penetration holes. Both one- and two-dimensional applications of the suggested method are presented. To improve the performance of factor analysis, particle swarm optimization (PSO) is applied to give a globally optimized estimate for the factor scores. Furthermore, by a hyperparameter estimation approach, some control parameters of the utilized PSO algorithm are automatically estimated by simulated annealing (SA) to ensure the convergence of the procedure. The result of the suggested ML-based log analysis method is compared and verified by an independent inversion estimate. The study shows that the PSO-based factor analysis aided by hyperparameter estimation provides reliable in situ estimates of water saturation, which may improve the solution of environmental end engineering problems in shallow unconsolidated heterogeneous formations.</p></div>","PeriodicalId":48965,"journal":{"name":"Acta Geodaetica et Geophysica","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40328-021-00354-4","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geodaetica et Geophysica","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s40328-021-00354-4","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 3
Abstract
In this paper, a set of machine learning (ML) tools is applied to estimate the water saturation of shallow unconsolidated sediments at the Bátaapáti site in Hungary. Water saturation is directly calculated from the first factor extracted from a set of direct push logs by factor analysis. The dataset observed by engineering geophysical sounding tools as special variants of direct-push probes contains data from a total of 12 shallow penetration holes. Both one- and two-dimensional applications of the suggested method are presented. To improve the performance of factor analysis, particle swarm optimization (PSO) is applied to give a globally optimized estimate for the factor scores. Furthermore, by a hyperparameter estimation approach, some control parameters of the utilized PSO algorithm are automatically estimated by simulated annealing (SA) to ensure the convergence of the procedure. The result of the suggested ML-based log analysis method is compared and verified by an independent inversion estimate. The study shows that the PSO-based factor analysis aided by hyperparameter estimation provides reliable in situ estimates of water saturation, which may improve the solution of environmental end engineering problems in shallow unconsolidated heterogeneous formations.
期刊介绍:
The journal publishes original research papers in the field of geodesy and geophysics under headings: aeronomy and space physics, electromagnetic studies, geodesy and gravimetry, geodynamics, geomathematics, rock physics, seismology, solid earth physics, history. Papers dealing with problems of the Carpathian region and its surroundings are preferred. Similarly, papers on topics traditionally covered by Hungarian geodesists and geophysicists (e.g. robust estimations, geoid, EM properties of the Earth’s crust, geomagnetic pulsations and seismological risk) are especially welcome.