{"title":"Assessment of epigenetic methylation changes in hop (Humulus lupulus) plants obtained by meristem culture","authors":"J. Patzak, A. Henychová, P. Svoboda, I. Malířová","doi":"10.17221/27/2020-cjgpb","DOIUrl":null,"url":null,"abstract":"In vitro meristem cultures have been used for the production of hop (Humulus lupulus L.) virus-free rootstocks worldwide, because multipropagation is considered to preserve the genetic stability of the produced plantlet. Nevertheless, in vitro tissue cultures can cause genetic and epigenetic changes. Therefore, we studied the genetic and epigenetic variability of Saaz Osvald’s clones, Sládek and Premiant cultivars on the DNA methylation level by methylation-sensitive amplification polymorphism (MSAP). In vitro propagated plants, acclimatised glasshouse rootstocks as well as derived mericlones and control plants under field conditions were used for the analyses. A total of 346 clearly and highly reproducible amplified products were detected in the MSAP analyses within the studied hop plants. We found 16 polymorphic products (4.6% of products) and 64 products with methylation changes (18.5% of products) in the analyses. The demethylation events were comparable to the de novo methylation events. Most demethylation changes were found in the in vitro plants, but only a few of them were found in the derived mericlones under field conditions. In contrast, the de novo methylation changes persisted in the acclimatised plants under glasshouse or field conditions. A hierarchical cluster analysis was used for the evaluation of the molecular genetic variability within the individual samples. The dendrogram showed that the individual samples of the same variety, more or less, clustered together. Because the methylation status varied during the virus-free rootstock production process, we suppose that de/methylation process is a natural tool of epigenetics and evolution in vegetatively propagated plants.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.17221/27/2020-cjgpb","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.17221/27/2020-cjgpb","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
In vitro meristem cultures have been used for the production of hop (Humulus lupulus L.) virus-free rootstocks worldwide, because multipropagation is considered to preserve the genetic stability of the produced plantlet. Nevertheless, in vitro tissue cultures can cause genetic and epigenetic changes. Therefore, we studied the genetic and epigenetic variability of Saaz Osvald’s clones, Sládek and Premiant cultivars on the DNA methylation level by methylation-sensitive amplification polymorphism (MSAP). In vitro propagated plants, acclimatised glasshouse rootstocks as well as derived mericlones and control plants under field conditions were used for the analyses. A total of 346 clearly and highly reproducible amplified products were detected in the MSAP analyses within the studied hop plants. We found 16 polymorphic products (4.6% of products) and 64 products with methylation changes (18.5% of products) in the analyses. The demethylation events were comparable to the de novo methylation events. Most demethylation changes were found in the in vitro plants, but only a few of them were found in the derived mericlones under field conditions. In contrast, the de novo methylation changes persisted in the acclimatised plants under glasshouse or field conditions. A hierarchical cluster analysis was used for the evaluation of the molecular genetic variability within the individual samples. The dendrogram showed that the individual samples of the same variety, more or less, clustered together. Because the methylation status varied during the virus-free rootstock production process, we suppose that de/methylation process is a natural tool of epigenetics and evolution in vegetatively propagated plants.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.