Existence and Regularity for Solution to a Degenerate Problem with Singular Gradient Lower Order Term

Q3 Mathematics
H. Khelifi
{"title":"Existence and Regularity for Solution to a Degenerate Problem with Singular Gradient Lower Order Term","authors":"H. Khelifi","doi":"10.2478/mjpaa-2022-0022","DOIUrl":null,"url":null,"abstract":"Abstract We study the existence and regularity results for non-linear elliptic equation with degenerate coercivity and a singular gradient lower order term. The model problems is { -div(b(x)| ∇u |p-2∇u(1+| u |)γ)+| ∇u |p| u |θ=f,in Ω,u=0,on ∂Ω, \\left\\{ {\\matrix{ { - div\\left( {b\\left( x \\right){{{{\\left| {\\nabla u} \\right|}^{p - 2}}\\nabla u} \\over {\\left( {1 + \\left| u \\right|} \\right)\\gamma }}} \\right) + {{{{\\left| {\\nabla u} \\right|}^p}} \\over {{{\\left| u \\right|}^\\theta }}} = f,} \\hfill & {in\\,\\Omega ,} \\hfill \\cr {u = 0,} \\hfill & {on\\,\\partial \\Omega ,} \\hfill \\cr } } \\right. swhere Ω is a bounded open subset in ℝN, 1 ≤ θ < 2, p > 2 and γ > 0. We will show that, even if the lower order term is singular, we obtain existence and regularity of positive solution, under various assumptions on the summability of the source f.","PeriodicalId":36270,"journal":{"name":"Moroccan Journal of Pure and Applied Analysis","volume":"8 1","pages":"310 - 327"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moroccan Journal of Pure and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mjpaa-2022-0022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract We study the existence and regularity results for non-linear elliptic equation with degenerate coercivity and a singular gradient lower order term. The model problems is { -div(b(x)| ∇u |p-2∇u(1+| u |)γ)+| ∇u |p| u |θ=f,in Ω,u=0,on ∂Ω, \left\{ {\matrix{ { - div\left( {b\left( x \right){{{{\left| {\nabla u} \right|}^{p - 2}}\nabla u} \over {\left( {1 + \left| u \right|} \right)\gamma }}} \right) + {{{{\left| {\nabla u} \right|}^p}} \over {{{\left| u \right|}^\theta }}} = f,} \hfill & {in\,\Omega ,} \hfill \cr {u = 0,} \hfill & {on\,\partial \Omega ,} \hfill \cr } } \right. swhere Ω is a bounded open subset in ℝN, 1 ≤ θ < 2, p > 2 and γ > 0. We will show that, even if the lower order term is singular, we obtain existence and regularity of positive solution, under various assumptions on the summability of the source f.
一类具有奇异梯度低阶项的退化问题解的存在性与正则性
研究了一类具有退化矫顽力和奇异梯度低阶项的非线性椭圆方程的存在性和正则性结果。模型问题是{div (b (x) | |∇u p 2∇u (1 u + | |)γ)+ |∇u p | | |θ= f,在Ω,u = 0,在∂Ω,左\ \{{\矩阵{{- div \离开({b \离开(x \右){{{{\左|{\微分算符u} \右|}^ {p - 2}} \微分算符u} \ /{\离开({1 + \左| u \ |} \) \伽马}}}\右)+{{{{\左|{\微分算符u} \右|}^ p}} \ /{{{\左| u \右|}^ \θ}}}= f,} \ hfill &{\ω,\}\ hfill \ cr {u = 0} \ hfill &{\、ω\部分\}\ hfill \ cr}} \。其中Ω是一个有界开子集,1≤θ < 2, p > 2和γ > 0。我们将证明,即使低阶项是奇异项,在各种关于源f可和性的假设下,我们得到了正解的存在性和正则性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Moroccan Journal of Pure and Applied Analysis
Moroccan Journal of Pure and Applied Analysis Mathematics-Numerical Analysis
CiteScore
1.60
自引率
0.00%
发文量
27
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信