{"title":"On Subgroups Finite Index in Complex Hyperbolic Lattice Triangle Groups","authors":"M. Deraux","doi":"10.1080/10586458.2022.2158969","DOIUrl":null,"url":null,"abstract":"We study several explicit finite index subgroups in the known complex hyperbolic lattice triangle groups, and show some of them are neat, some of them have positive first Betti number, some of them have a homomorphisms onto a non-Abelian free group. For some lattice triangle groups, we determine the minimal index of a neat subgroup. Finally, we answer a question raised by Stover and describe an infinite tower of neat ball quotients all with a single cusp.","PeriodicalId":50464,"journal":{"name":"Experimental Mathematics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/10586458.2022.2158969","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study several explicit finite index subgroups in the known complex hyperbolic lattice triangle groups, and show some of them are neat, some of them have positive first Betti number, some of them have a homomorphisms onto a non-Abelian free group. For some lattice triangle groups, we determine the minimal index of a neat subgroup. Finally, we answer a question raised by Stover and describe an infinite tower of neat ball quotients all with a single cusp.
期刊介绍:
Experimental Mathematics publishes original papers featuring formal results inspired by experimentation, conjectures suggested by experiments, and data supporting significant hypotheses.
Experiment has always been, and increasingly is, an important method of mathematical discovery. (Gauss declared that his way of arriving at mathematical truths was "through systematic experimentation.") Yet this tends to be concealed by the tradition of presenting only elegant, fully developed, and rigorous results.
Experimental Mathematics was founded in the belief that theory and experiment feed on each other, and that the mathematical community stands to benefit from a more complete exposure to the experimental process. The early sharing of insights increases the possibility that they will lead to theorems: An interesting conjecture is often formulated by a researcher who lacks the techniques to formalize a proof, while those who have the techniques at their fingertips have been looking elsewhere. Even when the person who had the initial insight goes on to find a proof, a discussion of the heuristic process can be of help, or at least of interest, to other researchers. There is value not only in the discovery itself, but also in the road that leads to it.