{"title":"Validated three-dimensional finite element modeling for static behavior of RC tapered columns","authors":"J. A. Kadhim, S. R. Al. Zaidee","doi":"10.1515/jmbm-2022-0226","DOIUrl":null,"url":null,"abstract":"Abstract This article aims to simulate the behavior of reinforced concrete (RC) tapered columns subjected to static loads. The experimental data used in the study are from the literature. Two of the simulated columns are slender columns tested under uniaxial eccentric loads. The third one is a short column and was tested concentrically. The concrete damaged plasticity (CDP) model offered in the Abaqus software, which accounts for stiffness degradation of concrete in both compression and tension, was used. The modulus of rupture of concrete and the value of the cracking strain proposed by the Abaqus analysis user’s manual were used as the parameters of tension stiffening. The modified Hognestadʼs model was used for the compressive behavior of concrete. The Static Riks analyses were performed with an activated geometric nonlinearity. The numerical failure load is 100.125, 99.297, and 102.16% of the experimental failure load for Models 1, 2, and 3, respectively. The agreement of the numerical results with the experimental results has confirmed the efficiency of the CDP model to simulate the concrete behavior, and has also revealed the validity of the numerical models.","PeriodicalId":17354,"journal":{"name":"Journal of the Mechanical Behavior of Materials","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jmbm-2022-0226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract This article aims to simulate the behavior of reinforced concrete (RC) tapered columns subjected to static loads. The experimental data used in the study are from the literature. Two of the simulated columns are slender columns tested under uniaxial eccentric loads. The third one is a short column and was tested concentrically. The concrete damaged plasticity (CDP) model offered in the Abaqus software, which accounts for stiffness degradation of concrete in both compression and tension, was used. The modulus of rupture of concrete and the value of the cracking strain proposed by the Abaqus analysis user’s manual were used as the parameters of tension stiffening. The modified Hognestadʼs model was used for the compressive behavior of concrete. The Static Riks analyses were performed with an activated geometric nonlinearity. The numerical failure load is 100.125, 99.297, and 102.16% of the experimental failure load for Models 1, 2, and 3, respectively. The agreement of the numerical results with the experimental results has confirmed the efficiency of the CDP model to simulate the concrete behavior, and has also revealed the validity of the numerical models.
期刊介绍:
The journal focuses on the micromechanics and nanomechanics of materials, the relationship between structure and mechanical properties, material instabilities and fracture, as well as size effects and length/time scale transitions. Articles on cutting edge theory, simulations and experiments – used as tools for revealing novel material properties and designing new devices for structural, thermo-chemo-mechanical, and opto-electro-mechanical applications – are encouraged. Synthesis/processing and related traditional mechanics/materials science themes are not within the scope of JMBM. The Editorial Board also organizes topical issues on emerging areas by invitation. Topics Metals and Alloys Ceramics and Glasses Soils and Geomaterials Concrete and Cementitious Materials Polymers and Composites Wood and Paper Elastomers and Biomaterials Liquid Crystals and Suspensions Electromagnetic and Optoelectronic Materials High-energy Density Storage Materials Monument Restoration and Cultural Heritage Preservation Materials Nanomaterials Complex and Emerging Materials.