{"title":"Dynamic treatment regimes with interference","authors":"Cong Jiang, Michael P. Wallace, Mary E. Thompson","doi":"10.1002/cjs.11702","DOIUrl":null,"url":null,"abstract":"<p>Precision medicine describes health care where patient-level data are used to inform treatment decisions. Within this framework, dynamic treatment regimes (DTRs) are sequences of decision rules that take individual patient information as input data and then output treatment recommendations. DTR estimation from observational data typically relies on the assumption of no interference: i.e., the outcome of one individual is unaffected by the treatment assignment of others. However, in many social network contexts, such as friendship or family networks, and for many health concerns, such as infectious diseases, this assumption is questionable. We investigate the DTR estimation method of dynamic weighted ordinary least squares (dWOLS), which boasts of easy implementation and the so-called double-robustness property, but relies on the assumption of no interference. We define a network propensity function and build on it to establish an implementation of dWOLS that remains doubly robust under interference associated with network links. The method's properties are demonstrated via simulation and applied to data from the Population Assessment of Tobacco and Health (PATH) study to investigate cigarette dependence within two-person household networks.</p>","PeriodicalId":55281,"journal":{"name":"Canadian Journal of Statistics-Revue Canadienne De Statistique","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Statistics-Revue Canadienne De Statistique","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11702","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 4
Abstract
Precision medicine describes health care where patient-level data are used to inform treatment decisions. Within this framework, dynamic treatment regimes (DTRs) are sequences of decision rules that take individual patient information as input data and then output treatment recommendations. DTR estimation from observational data typically relies on the assumption of no interference: i.e., the outcome of one individual is unaffected by the treatment assignment of others. However, in many social network contexts, such as friendship or family networks, and for many health concerns, such as infectious diseases, this assumption is questionable. We investigate the DTR estimation method of dynamic weighted ordinary least squares (dWOLS), which boasts of easy implementation and the so-called double-robustness property, but relies on the assumption of no interference. We define a network propensity function and build on it to establish an implementation of dWOLS that remains doubly robust under interference associated with network links. The method's properties are demonstrated via simulation and applied to data from the Population Assessment of Tobacco and Health (PATH) study to investigate cigarette dependence within two-person household networks.
期刊介绍:
The Canadian Journal of Statistics is the official journal of the Statistical Society of Canada. It has a reputation internationally as an excellent journal. The editorial board is comprised of statistical scientists with applied, computational, methodological, theoretical and probabilistic interests. Their role is to ensure that the journal continues to provide an international forum for the discipline of Statistics.
The journal seeks papers making broad points of interest to many readers, whereas papers making important points of more specific interest are better placed in more specialized journals. The levels of innovation and impact are key in the evaluation of submitted manuscripts.