Dynamic treatment regimes with interference

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
Cong Jiang, Michael P. Wallace, Mary E. Thompson
{"title":"Dynamic treatment regimes with interference","authors":"Cong Jiang,&nbsp;Michael P. Wallace,&nbsp;Mary E. Thompson","doi":"10.1002/cjs.11702","DOIUrl":null,"url":null,"abstract":"<p>Precision medicine describes health care where patient-level data are used to inform treatment decisions. Within this framework, dynamic treatment regimes (DTRs) are sequences of decision rules that take individual patient information as input data and then output treatment recommendations. DTR estimation from observational data typically relies on the assumption of no interference: i.e., the outcome of one individual is unaffected by the treatment assignment of others. However, in many social network contexts, such as friendship or family networks, and for many health concerns, such as infectious diseases, this assumption is questionable. We investigate the DTR estimation method of dynamic weighted ordinary least squares (dWOLS), which boasts of easy implementation and the so-called double-robustness property, but relies on the assumption of no interference. We define a network propensity function and build on it to establish an implementation of dWOLS that remains doubly robust under interference associated with network links. The method's properties are demonstrated via simulation and applied to data from the Population Assessment of Tobacco and Health (PATH) study to investigate cigarette dependence within two-person household networks.</p>","PeriodicalId":55281,"journal":{"name":"Canadian Journal of Statistics-Revue Canadienne De Statistique","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Statistics-Revue Canadienne De Statistique","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11702","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 4

Abstract

Precision medicine describes health care where patient-level data are used to inform treatment decisions. Within this framework, dynamic treatment regimes (DTRs) are sequences of decision rules that take individual patient information as input data and then output treatment recommendations. DTR estimation from observational data typically relies on the assumption of no interference: i.e., the outcome of one individual is unaffected by the treatment assignment of others. However, in many social network contexts, such as friendship or family networks, and for many health concerns, such as infectious diseases, this assumption is questionable. We investigate the DTR estimation method of dynamic weighted ordinary least squares (dWOLS), which boasts of easy implementation and the so-called double-robustness property, but relies on the assumption of no interference. We define a network propensity function and build on it to establish an implementation of dWOLS that remains doubly robust under interference associated with network links. The method's properties are demonstrated via simulation and applied to data from the Population Assessment of Tobacco and Health (PATH) study to investigate cigarette dependence within two-person household networks.

有干扰的动态治疗方案
精准医学描述了使用患者水平数据来为治疗决策提供信息的医疗保健。在这个框架中,动态治疗方案(DTRs)是一系列的决策规则,将个体患者信息作为输入数据,然后输出治疗建议。从观察数据估计DTR通常依赖于无干扰的假设:即,一个人的结果不受其他人的治疗分配的影响。然而,在许多社会网络环境中,如友谊或家庭网络,以及许多健康问题,如传染病,这种假设是值得怀疑的。本文研究了动态加权普通最小二乘(dWOLS)的DTR估计方法,该方法具有易于实现和所谓的双鲁棒性,但依赖于无干扰假设。我们定义了一个网络倾向函数,并在此基础上建立了一个在与网络链接相关的干扰下保持双重鲁棒性的dWOLS实现。通过模拟证明了该方法的特性,并将其应用于烟草与健康人口评估(PATH)研究的数据,该研究旨在调查两人家庭网络中的卷烟依赖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
62
审稿时长
>12 weeks
期刊介绍: The Canadian Journal of Statistics is the official journal of the Statistical Society of Canada. It has a reputation internationally as an excellent journal. The editorial board is comprised of statistical scientists with applied, computational, methodological, theoretical and probabilistic interests. Their role is to ensure that the journal continues to provide an international forum for the discipline of Statistics. The journal seeks papers making broad points of interest to many readers, whereas papers making important points of more specific interest are better placed in more specialized journals. The levels of innovation and impact are key in the evaluation of submitted manuscripts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信