J. Qian, Hao Zheng, Peifang Wang, X. Liao, Chao Wang, Kun Li, Jingjing Liu, Bianhe Lu, X. Tian, Weihao Yuan
{"title":"Water sources of riparian plants during a rainy season in Taihu Lake Basin, China: a stable isotope study","authors":"J. Qian, Hao Zheng, Peifang Wang, X. Liao, Chao Wang, Kun Li, Jingjing Liu, Bianhe Lu, X. Tian, Weihao Yuan","doi":"10.1080/09542299.2017.1373035","DOIUrl":null,"url":null,"abstract":"Abstract In this study, we investigated water sources of three typical plant species, i.e., Ginkgo biloba (Ginkgo biloba L.), Green soybean (Glycine max (L) Merr.), and Mulberry tree (Morus alba L.) in a rainy season by using a dual stable isotope approach (δ18O and δ2H). Potential water sources were divided into direct or internal (i.e. soil water at different depths) and indirect or external water sources (i.e. precipitation, river water and groundwater). The results indicated that the surface soil water δ18O and δ2H is enriched probably due to evaporation. Ginkgo biloba and Green soybean prefer using soil water from the upper soil layer (0–60 cm) and precipitation, and the Mulberry tree mainly used deep soil water (120-150 cm) and groundwater. The different water use strategies of the three plant species are likely to be determined by their different root distribution at the above correspondent soil depths.","PeriodicalId":55264,"journal":{"name":"Chemical Speciation and Bioavailability","volume":"29 1","pages":"153 - 160"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09542299.2017.1373035","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Speciation and Bioavailability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09542299.2017.1373035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 6
Abstract
Abstract In this study, we investigated water sources of three typical plant species, i.e., Ginkgo biloba (Ginkgo biloba L.), Green soybean (Glycine max (L) Merr.), and Mulberry tree (Morus alba L.) in a rainy season by using a dual stable isotope approach (δ18O and δ2H). Potential water sources were divided into direct or internal (i.e. soil water at different depths) and indirect or external water sources (i.e. precipitation, river water and groundwater). The results indicated that the surface soil water δ18O and δ2H is enriched probably due to evaporation. Ginkgo biloba and Green soybean prefer using soil water from the upper soil layer (0–60 cm) and precipitation, and the Mulberry tree mainly used deep soil water (120-150 cm) and groundwater. The different water use strategies of the three plant species are likely to be determined by their different root distribution at the above correspondent soil depths.
期刊介绍:
Chemical Speciation & Bioavailability ( CS&B) is a scholarly, peer-reviewed forum for insights on the chemical aspects of occurrence, distribution, transport, transformation, transfer, fate, and effects of substances in the environment and biota, and their impacts on the uptake of the substances by living organisms. Substances of interests include both beneficial and toxic ones, especially nutrients, heavy metals, persistent organic pollutants, and emerging contaminants, such as engineered nanomaterials, as well as pharmaceuticals and personal-care products as pollutants. It is the aim of this Journal to develop an international community of experienced colleagues to promote the research, discussion, review, and spread of information on chemical speciation and bioavailability, which is a topic of interest to researchers in many disciplines, including environmental, chemical, biological, food, medical, toxicology, and health sciences.
Key themes in the scope of the Journal include, but are not limited to, the following “6Ms”:
Methods for speciation analysis and the evaluation of bioavailability, especially the development, validation, and application of novel methods and techniques.
Media that sustain the processes of release, distribution, transformation, and transfer of chemical speciation; of particular interest are emerging contaminants, such as engineered nanomaterials, pharmaceuticals, and personal-care products.
Mobility of substance species in environment and biota, either spatially or temporally.
Matters that influence the chemical speciation and bioavailability, mainly environmentally relevant conditions.
Mechanisms that govern the transport, transformation, transfer, and fate of chemical speciation in the environment, and the biouptake of substances.
Models for the simulation of chemical speciation and bioavailability, and for the prediction of toxicity.
Chemical Speciation & Bioavailability is a fully open access journal. This means all submitted articles will, if accepted, be available for anyone to read, anywhere, at any time. immediately on publication. There are no charges for submission to this journal.