Xiaokang Zhou, Wei Liang, K. Wang, Zheng Yan, L. Yang, Wei Wei, Jianhua Ma, Qun Jin
{"title":"Decentralized P2P Federated Learning for Privacy-Preserving and Resilient Mobile Robotic Systems","authors":"Xiaokang Zhou, Wei Liang, K. Wang, Zheng Yan, L. Yang, Wei Wei, Jianhua Ma, Qun Jin","doi":"10.1109/MWC.004.2200381","DOIUrl":null,"url":null,"abstract":"Swarms of mobile robots are being widely applied for complex tasks in various practical scenarios toward modern smart industry. Federated learning (FL) has been developed as a promising privacy-preserving paradigm to tackle distributed machine learning tasks for mobile robotic systems in 5G and beyond networks. However, unstable wireless network conditions of the complex and harsh working environment may lead to poor communication quality and bring big challenges to traditional centralized global training in FL models. In this article, a Peer-to-Peer (P2P) based Privacy-Perceiving Asynchronous Federated Learning (PPAFL) framework is introduced to realize the decentralized model training for secure and resilient modern mobile robotic systems in 5G and beyond networks. Specifically, a reputation-aware coordination mechanism is designed and addressed to coordinate a group of smart devices dynamically into a virtual cluster, in which the asynchronous model aggregation is conducted in a decentralized P2P manner. A secret sharing based communication mechanism is developed to ensure an encrypted P2P FL process, while a Secure Stochastic Gradient Descent (SSGD) scheme is integrated with an Autoencoder and a Gaussian mechanism is developed to ensure an anonymized local model update, communicating within a few neighboring clients. The case study based experiment and evaluation in three different application scenarios demonstrate that the PPAFL can effectively improve the security and resilience issues compared with the traditional centralized approaches for smart mobile robotic applications in 5G and beyond networks.","PeriodicalId":13342,"journal":{"name":"IEEE Wireless Communications","volume":"30 1","pages":"82-89"},"PeriodicalIF":10.9000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Wireless Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/MWC.004.2200381","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 21
Abstract
Swarms of mobile robots are being widely applied for complex tasks in various practical scenarios toward modern smart industry. Federated learning (FL) has been developed as a promising privacy-preserving paradigm to tackle distributed machine learning tasks for mobile robotic systems in 5G and beyond networks. However, unstable wireless network conditions of the complex and harsh working environment may lead to poor communication quality and bring big challenges to traditional centralized global training in FL models. In this article, a Peer-to-Peer (P2P) based Privacy-Perceiving Asynchronous Federated Learning (PPAFL) framework is introduced to realize the decentralized model training for secure and resilient modern mobile robotic systems in 5G and beyond networks. Specifically, a reputation-aware coordination mechanism is designed and addressed to coordinate a group of smart devices dynamically into a virtual cluster, in which the asynchronous model aggregation is conducted in a decentralized P2P manner. A secret sharing based communication mechanism is developed to ensure an encrypted P2P FL process, while a Secure Stochastic Gradient Descent (SSGD) scheme is integrated with an Autoencoder and a Gaussian mechanism is developed to ensure an anonymized local model update, communicating within a few neighboring clients. The case study based experiment and evaluation in three different application scenarios demonstrate that the PPAFL can effectively improve the security and resilience issues compared with the traditional centralized approaches for smart mobile robotic applications in 5G and beyond networks.
期刊介绍:
IEEE Wireless Communications is tailored for professionals within the communications and networking communities. It addresses technical and policy issues associated with personalized, location-independent communications across various media and protocol layers. Encompassing both wired and wireless communications, the magazine explores the intersection of computing, the mobility of individuals, communicating devices, and personalized services.
Every issue of this interdisciplinary publication presents high-quality articles delving into the revolutionary technological advances in personal, location-independent communications, and computing. IEEE Wireless Communications provides an insightful platform for individuals engaged in these dynamic fields, offering in-depth coverage of significant developments in the realm of communication technology.