Complete Approximations by Multivariate Generalized Gauss-Weierstrass Singular Integrals

Q3 Mathematics
G. Anastassiou
{"title":"Complete Approximations by Multivariate Generalized Gauss-Weierstrass Singular Integrals","authors":"G. Anastassiou","doi":"10.2478/mjpaa-2021-0012","DOIUrl":null,"url":null,"abstract":"Abstract This research and survey article deals exclusively with the study of the approximation of generalized multivariate Gauss-Weierstrass singular integrals to the identity-unit operator. Here we study quantitatively most of their approximation properties. The multivariate generalized Gauss-Weierstrass operators are not in general positive linear operators. In particular we study the rate of convergence of these operators to the unit operator, as well as the related simultaneous approximation. These are given via Jackson type inequalities and by the use of multivariate high order modulus of smoothness of the high order partial derivatives of the involved function. Also we study the global smoothness preservation properties of these operators. These multivariate inequalities are nearly sharp and in one case the inequality is attained, that is sharp. Furthermore we give asymptotic expansions of Voronovskaya type for the error of multivariate approximation. The above properties are studied with respect to Lpnorm, 1 ≤ p ≤ ∞.","PeriodicalId":36270,"journal":{"name":"Moroccan Journal of Pure and Applied Analysis","volume":"7 1","pages":"134 - 172"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moroccan Journal of Pure and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mjpaa-2021-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract This research and survey article deals exclusively with the study of the approximation of generalized multivariate Gauss-Weierstrass singular integrals to the identity-unit operator. Here we study quantitatively most of their approximation properties. The multivariate generalized Gauss-Weierstrass operators are not in general positive linear operators. In particular we study the rate of convergence of these operators to the unit operator, as well as the related simultaneous approximation. These are given via Jackson type inequalities and by the use of multivariate high order modulus of smoothness of the high order partial derivatives of the involved function. Also we study the global smoothness preservation properties of these operators. These multivariate inequalities are nearly sharp and in one case the inequality is attained, that is sharp. Furthermore we give asymptotic expansions of Voronovskaya type for the error of multivariate approximation. The above properties are studied with respect to Lpnorm, 1 ≤ p ≤ ∞.
多元广义Gauss-Weierstrass奇异积分的完全逼近
摘要本文专门研究了广义多元高斯-魏尔斯特拉斯奇异积分对单位算子的逼近问题。在这里,我们定量地研究了它们的大部分近似性质。多元广义高斯-魏尔斯特拉斯算子不是一般的正线性算子。特别地,我们研究了这些算子对单位算子的收敛速度,以及相关的同时逼近。这些是通过Jackson型不等式和通过使用所涉及函数的高阶偏导数的多元高阶光滑模给出的。我们还研究了这些算子的全局光滑性保持性质。这些多元不等式几乎是尖锐的,在一种情况下,不等式是尖锐的。此外,我们给出了多元逼近误差的Voronovskaya型渐近展开式。关于Lpnorm,1≤p≤∞,研究了上述性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Moroccan Journal of Pure and Applied Analysis
Moroccan Journal of Pure and Applied Analysis Mathematics-Numerical Analysis
CiteScore
1.60
自引率
0.00%
发文量
27
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信