Controller design for model-scale rotors and validation using prescribed motion

IF 3.6 Q3 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
A. Fontanella, Elio Daka, Felipe Novais, M. Belloli
{"title":"Controller design for model-scale rotors and validation using prescribed motion","authors":"A. Fontanella, Elio Daka, Felipe Novais, M. Belloli","doi":"10.5194/wes-8-1351-2023","DOIUrl":null,"url":null,"abstract":"Abstract. Aerodynamic-load calculation in aero-hydro-servo-elastic modeling tools has been recently validated against experiments for low-frequency platform motions but without considering the capability of active wind turbine controls. This work presents a control design framework that allows for including industry-standard wind turbine control functionalities in a model-scale rotor and its application to a 1:100 scaled version of the International Energy Agency (IEA) 15 MW turbine. Wind tunnel tests with a fixed foundation and steady wind show the scaled turbine reproduces the steady-state rotor speed–blade pitch–thrust–torque characteristics of the IEA 15 MW turbine, confirming the controller design method. Tests with a prescribed platform pitch motion are carried out to assess the turbine response and controller modeling in conditions representative of the normal operation of floating wind turbines. The blade element momentum model of OpenFAST is verified against the experiment, showing aerodynamic thrust and torque are predicted with higher accuracy in the below-rated than the above-rated region: in our simulation, the decrease in thrust oscillation amplitude due to blade pitch actuation is underpredicted. This, combined with uncertainty in modeling the blade pitch actuators, complicates the numerical–experimental simulation of the turbine aerodynamic response in above-rated operation.\n","PeriodicalId":46540,"journal":{"name":"Wind Energy Science","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind Energy Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/wes-8-1351-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. Aerodynamic-load calculation in aero-hydro-servo-elastic modeling tools has been recently validated against experiments for low-frequency platform motions but without considering the capability of active wind turbine controls. This work presents a control design framework that allows for including industry-standard wind turbine control functionalities in a model-scale rotor and its application to a 1:100 scaled version of the International Energy Agency (IEA) 15 MW turbine. Wind tunnel tests with a fixed foundation and steady wind show the scaled turbine reproduces the steady-state rotor speed–blade pitch–thrust–torque characteristics of the IEA 15 MW turbine, confirming the controller design method. Tests with a prescribed platform pitch motion are carried out to assess the turbine response and controller modeling in conditions representative of the normal operation of floating wind turbines. The blade element momentum model of OpenFAST is verified against the experiment, showing aerodynamic thrust and torque are predicted with higher accuracy in the below-rated than the above-rated region: in our simulation, the decrease in thrust oscillation amplitude due to blade pitch actuation is underpredicted. This, combined with uncertainty in modeling the blade pitch actuators, complicates the numerical–experimental simulation of the turbine aerodynamic response in above-rated operation.
模型级转子的控制器设计和使用规定运动的验证
摘要气动-液压-伺服-弹性建模工具中的气动载荷计算最近已经通过低频平台运动的实验验证,但没有考虑风力机主动控制的能力。这项工作提出了一个控制设计框架,允许在模型比例转子中包括工业标准的风力涡轮机控制功能,并将其应用于国际能源署(IEA) 15兆瓦涡轮机的1:100比例版本。在固定基础和稳定风力条件下的风洞试验表明,该比例涡轮机再现了IEA 15mw涡轮机的稳态转子转速-叶片俯仰-推力-转矩特性,验证了控制器的设计方法。在规定的平台俯仰运动条件下,进行了测试,以评估浮动风力涡轮机正常运行条件下的涡轮机响应和控制器建模。通过实验验证了OpenFAST的叶片单元动量模型,表明在额定以下区域气动推力和扭矩的预测精度高于额定以上区域;在我们的模拟中,由于叶片俯仰驱动导致的推力振荡幅度的下降被低估了。这一点,再加上桨距致动器建模的不确定性,使得涡轮气动响应的数值-实验模拟变得复杂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Wind Energy Science
Wind Energy Science GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY-
CiteScore
6.90
自引率
27.50%
发文量
115
审稿时长
28 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信