Construction of Cubature Formulas Via Bivariate Quadratic Spline Spaces over Non-Uniform Type-2 Triangulation

IF 0.9 4区 数学 Q2 MATHEMATICS
Jiang Qian, Xiquan Shi, Jinming Wu null, Dianxuan Gong
{"title":"Construction of Cubature Formulas Via Bivariate Quadratic Spline Spaces over Non-Uniform Type-2 Triangulation","authors":"Jiang Qian, Xiquan Shi, Jinming Wu null, Dianxuan Gong","doi":"10.4208/jcm.2008-m2020-0077","DOIUrl":null,"url":null,"abstract":"In this paper, matrix representations of the best spline quasi-interpolating operator over triangular sub-domains in S1 2(∆ (2) mn), and coefficients of splines in terms of B-net are reviewed firstly. Moreover, by means of coefficients in terms of B-net, computation of bivariate numerical cubature over triangular sub-domains with respect to variables x and y is transferred into summation of coefficients of splines in terms of B-net. Thus concise bivariate cubature formulas are constructed over rectangular sub-domain. Furthermore, by means of module of continuity and max-norms, error estimates for cubature formulas are derived over both sub-domains and the domain. MSC:","PeriodicalId":50225,"journal":{"name":"Journal of Computational Mathematics","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/jcm.2008-m2020-0077","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, matrix representations of the best spline quasi-interpolating operator over triangular sub-domains in S1 2(∆ (2) mn), and coefficients of splines in terms of B-net are reviewed firstly. Moreover, by means of coefficients in terms of B-net, computation of bivariate numerical cubature over triangular sub-domains with respect to variables x and y is transferred into summation of coefficients of splines in terms of B-net. Thus concise bivariate cubature formulas are constructed over rectangular sub-domain. Furthermore, by means of module of continuity and max-norms, error estimates for cubature formulas are derived over both sub-domains and the domain. MSC:
非均匀型-2三角剖分上二元二次样条空间构造模型公式
本文首先讨论了S1 2(∆(2)mn)中三角子域上最佳样条拟插值算子的矩阵表示,以及B-net中样条系数。此外,通过用B-net表示的系数,将三角子域上关于变量x和y的二元数值计算转化为用B-net表示的样条系数求和。从而在矩形子域上构造了简明的二元培养公式。在此基础上,利用连续模和极大范数的方法,导出了各子域和区域上的误差估计。硕士:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
1130
审稿时长
2 months
期刊介绍: Journal of Computational Mathematics (JCM) is an international scientific computing journal founded by Professor Feng Kang in 1983, which is the first Chinese computational mathematics journal published in English. JCM covers all branches of modern computational mathematics such as numerical linear algebra, numerical optimization, computational geometry, numerical PDEs, and inverse problems. JCM has been sponsored by the Institute of Computational Mathematics of the Chinese Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信