Bénard Problem for Slightly Compressible Fluids: Existence and Nonlinear Stability in 3D

IF 1.4 Q2 MATHEMATICS, APPLIED
A. Passerini
{"title":"Bénard Problem for Slightly Compressible Fluids: Existence and Nonlinear Stability in 3D","authors":"A. Passerini","doi":"10.1155/2020/9610689","DOIUrl":null,"url":null,"abstract":"This paper shows the existence, uniqueness, and asymptotic behavior in time of regular solutions (a la Ladyzhenskaya) to the Benard problem for a heat-conducting fluid model generalizing the classical Oberbeck–Boussinesq one. The novelty of this model, introduced by Corli and Passerini, 2019, and Passerini and Ruggeri, 2014, consists in allowing the density of the fluid to also depend on the pressure field, which, as shown by Passerini and Ruggeri, 2014, is a necessary request from a thermodynamic viewpoint when dealing with convective problems. This property adds to the problem a rather interesting mathematical challenge that is not encountered in the classical model, thus requiring a new approach for its resolution.","PeriodicalId":55967,"journal":{"name":"International Journal of Differential Equations","volume":"2020 1","pages":"1-11"},"PeriodicalIF":1.4000,"publicationDate":"2020-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/9610689","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2020/9610689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

This paper shows the existence, uniqueness, and asymptotic behavior in time of regular solutions (a la Ladyzhenskaya) to the Benard problem for a heat-conducting fluid model generalizing the classical Oberbeck–Boussinesq one. The novelty of this model, introduced by Corli and Passerini, 2019, and Passerini and Ruggeri, 2014, consists in allowing the density of the fluid to also depend on the pressure field, which, as shown by Passerini and Ruggeri, 2014, is a necessary request from a thermodynamic viewpoint when dealing with convective problems. This property adds to the problem a rather interesting mathematical challenge that is not encountered in the classical model, thus requiring a new approach for its resolution.
微可压缩流体的Bénard问题:三维存在性和非线性稳定性
本文证明了推广经典Oberbeck–Boussinesq模型的导热流体模型Benard问题正则解(a la Ladyzenskaya)的存在性、唯一性和时间渐近性。Corli和Passerini,2019,以及Passerini和Ruggeri,2014引入的该模型的新颖性在于,允许流体的密度也取决于压力场,正如Passerini和Ruggerri,2014所示,这是处理对流问题时从热力学角度的必要要求。这一特性为问题增加了一个相当有趣的数学挑战,这在经典模型中是没有遇到的,因此需要一种新的方法来解决它。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
20
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信