On quadratic variations for the fractional-white wave equation

IF 0.4 Q4 STATISTICS & PROBABILITY
Radomyra Shevchenko
{"title":"On quadratic variations for the fractional-white wave equation","authors":"Radomyra Shevchenko","doi":"10.1090/tpms/1192","DOIUrl":null,"url":null,"abstract":"This paper studies the behaviour of quadratic variations of a stochastic wave equation driven by a noise that is white in space and fractional in time. Complementing the analysis of quadratic variations in the space component carried out in [Correlation structure, quadratic variations and parameter estimation for the solution to the wave equation with fractional noise, Electron. J. Stat. 12 (2018), no. 2, 3639–3672] and [Generalized \n\n \n k\n k\n \n\n-variations and Hurst parameter estimation for the fractional wave equation via Malliavin calculus, J. Statist. Plann. Inference 207 (2020), 155–180], it focuses on the time component of the solution process. For different values of the Hurst parameter a central and a noncentral limit theorems are proved, allowing to construct parameter estimators and compare them to the findings in the space-dependent case. Finally, rectangular quadratic variations in the white noise case are studied and a central limit theorem is demonstrated.","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2021-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and Mathematical Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tpms/1192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies the behaviour of quadratic variations of a stochastic wave equation driven by a noise that is white in space and fractional in time. Complementing the analysis of quadratic variations in the space component carried out in [Correlation structure, quadratic variations and parameter estimation for the solution to the wave equation with fractional noise, Electron. J. Stat. 12 (2018), no. 2, 3639–3672] and [Generalized k k -variations and Hurst parameter estimation for the fractional wave equation via Malliavin calculus, J. Statist. Plann. Inference 207 (2020), 155–180], it focuses on the time component of the solution process. For different values of the Hurst parameter a central and a noncentral limit theorems are proved, allowing to construct parameter estimators and compare them to the findings in the space-dependent case. Finally, rectangular quadratic variations in the white noise case are studied and a central limit theorem is demonstrated.
分数型白波方程的二次变分
本文研究了一个随机波动方程的二次变分行为,该方程由空间上为白色、时间上为分数的噪声驱动。补充了[具有分数噪声的波动方程解的相关结构、二次方差和参数估计,Electron.J.Stat.12(2018),no.2,3639–3672]和[通过Malliavin微积分对分数波动方程的广义k k-方差和Hurst参数估计,J。Statist。Plann。推论207(2020),155–180],它关注解决方案过程的时间成分。对于Hurst参数的不同值,证明了一个中心极限定理和一个非中心极限定理,允许构造参数估计量,并将其与空间相关情况下的结果进行比较。最后,研究了白噪声情况下的矩形二次变分,并证明了一个中心极限定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信