Injamamul Haque, Tabish Alam, Jagmohan Yadav, N. Gupta, Md Irfanul Haque Siddiqui, T. Siddiqui, Naushad Ali, Shivam Srivastava, Anil Singh Yadav, Abhishek Sharma, Rohit Khargotra, A. K. Thakur
{"title":"Numerical analysis of various shapes of lozenge pin-fins in microchannel heat sink","authors":"Injamamul Haque, Tabish Alam, Jagmohan Yadav, N. Gupta, Md Irfanul Haque Siddiqui, T. Siddiqui, Naushad Ali, Shivam Srivastava, Anil Singh Yadav, Abhishek Sharma, Rohit Khargotra, A. K. Thakur","doi":"10.1515/ijcre-2023-0092","DOIUrl":null,"url":null,"abstract":"Abstract Higher density heat flux is the major cause of damage to the electronic component; therefore, cooling such components are of the utmost importance to operate in a safe zone and to increase their life. For this purpose, Microchannel heat sinks (MHSs) are among the most practical methods for dissipating unwanted heat. In this regard, the novel lozenge-shaped pin-fins in the flow passage of the microchannel heat sink (MHS) have been designed and proposed to achieve higher cooling performance. Aspect ratios (λ = 0.30, 0.39, 0.52, 0.69, 1.00) of several lozenge-shaped pin-fins have been used into the design of MHS to investigate their impact on heat transmission and fluid flow characteristics. A three-dimensional model of MHS with a lozenge-shaped has been generated and simulated numerically in the following range of Reynolds numbers, starting from 100 to 900. Heat transmission and flow characteristics have been presented and discussed in detail. It has been found that introducing lozenge-shaped pin-fins in MHS has greatly improved cooling performance. The highest improvement in Nusselt number has been observed when aspect ratio (λ) of lozenge-shaped pin-fins was 1.00. The Nusselt number have been varied in the following ranges of 6.96–12.34, 6.97–12.72, 7.01–13.62, 7.09–14.43, and 7.12–15.26 at λ = 0.30, λ = 0.39, λ = 0.52, λ = 0.69, and λ = 1.0, respectively. In addition, a study of the thermohydraulic performance of the proposed lozenge-shaped pin-fins in the MHS found that this design is an effective means of lowering operating temperature.","PeriodicalId":51069,"journal":{"name":"International Journal of Chemical Reactor Engineering","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Reactor Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijcre-2023-0092","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Higher density heat flux is the major cause of damage to the electronic component; therefore, cooling such components are of the utmost importance to operate in a safe zone and to increase their life. For this purpose, Microchannel heat sinks (MHSs) are among the most practical methods for dissipating unwanted heat. In this regard, the novel lozenge-shaped pin-fins in the flow passage of the microchannel heat sink (MHS) have been designed and proposed to achieve higher cooling performance. Aspect ratios (λ = 0.30, 0.39, 0.52, 0.69, 1.00) of several lozenge-shaped pin-fins have been used into the design of MHS to investigate their impact on heat transmission and fluid flow characteristics. A three-dimensional model of MHS with a lozenge-shaped has been generated and simulated numerically in the following range of Reynolds numbers, starting from 100 to 900. Heat transmission and flow characteristics have been presented and discussed in detail. It has been found that introducing lozenge-shaped pin-fins in MHS has greatly improved cooling performance. The highest improvement in Nusselt number has been observed when aspect ratio (λ) of lozenge-shaped pin-fins was 1.00. The Nusselt number have been varied in the following ranges of 6.96–12.34, 6.97–12.72, 7.01–13.62, 7.09–14.43, and 7.12–15.26 at λ = 0.30, λ = 0.39, λ = 0.52, λ = 0.69, and λ = 1.0, respectively. In addition, a study of the thermohydraulic performance of the proposed lozenge-shaped pin-fins in the MHS found that this design is an effective means of lowering operating temperature.
期刊介绍:
The International Journal of Chemical Reactor Engineering covers the broad fields of theoretical and applied reactor engineering. The IJCRE covers topics drawn from the substantial areas of overlap between catalysis, reaction and reactor engineering. The journal is presently edited by Hugo de Lasa and Charles Xu, counting with an impressive list of Editorial Board leading specialists in chemical reactor engineering. Authors include notable international professors and R&D industry leaders.