Model averaging for semiparametric varying coefficient quantile regression models

Pub Date : 2022-12-22 DOI:10.1007/s10463-022-00857-z
Zishu Zhan, Yang Li, Yuhong Yang, Cunjie Lin
{"title":"Model averaging for semiparametric varying coefficient quantile regression models","authors":"Zishu Zhan,&nbsp;Yang Li,&nbsp;Yuhong Yang,&nbsp;Cunjie Lin","doi":"10.1007/s10463-022-00857-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we propose a model averaging approach to estimating the conditional quantiles based on a set of semiparametric varying coefficient models. Different from existing literature on the subject, we consider a particular form for all candidates, where there is only one varying coefficient in each sub-model, and all the candidates under investigation may be misspecified. We propose a weight choice criterion based on a leave-more-out cross-validation objective function. Moreover, the resulting averaging estimator is more robust against model misspecification due to the weighted coefficients that adjust the relative importance of the varying and constant coefficients for the same predictors. We prove out statistical properties for each sub-model and asymptotic optimality of the weight selection method. Simulation studies show that the proposed procedure has satisfactory prediction accuracy. An analysis of a skin cutaneous melanoma data further supports the merits of the proposed approach.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-022-00857-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this study, we propose a model averaging approach to estimating the conditional quantiles based on a set of semiparametric varying coefficient models. Different from existing literature on the subject, we consider a particular form for all candidates, where there is only one varying coefficient in each sub-model, and all the candidates under investigation may be misspecified. We propose a weight choice criterion based on a leave-more-out cross-validation objective function. Moreover, the resulting averaging estimator is more robust against model misspecification due to the weighted coefficients that adjust the relative importance of the varying and constant coefficients for the same predictors. We prove out statistical properties for each sub-model and asymptotic optimality of the weight selection method. Simulation studies show that the proposed procedure has satisfactory prediction accuracy. An analysis of a skin cutaneous melanoma data further supports the merits of the proposed approach.

Abstract Image

分享
查看原文
半参数变系数分位数回归模型的模型平均
在这项研究中,我们提出了一种基于半参数变系数模型的模型平均方法来估计条件分位数。与现有文献不同的是,我们考虑了所有候选项的特定形式,其中每个子模型中只有一个变化系数,并且所有被调查的候选项都可能被错误指定。我们提出了一个基于留多交叉验证目标函数的权重选择准则。此外,由于加权系数调整了相同预测因子的变系数和常系数的相对重要性,因此所得的平均估计器对模型错误规范的鲁棒性更强。证明了各子模型的统计性质和权重选择方法的渐近最优性。仿真研究表明,该方法具有较好的预测精度。对皮肤黑色素瘤数据的分析进一步支持了所提出方法的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信