Near-Field Evaluation of Reproducible Speech Sources

IF 1.1 4区 工程技术 Q3 ACOUSTICS
Raimundo Gonzalez, Thomas McKenzie, A. Politis, T. Lokki
{"title":"Near-Field Evaluation of Reproducible Speech Sources","authors":"Raimundo Gonzalez, Thomas McKenzie, A. Politis, T. Lokki","doi":"10.17743/jaes.2022.0022","DOIUrl":null,"url":null,"abstract":"The spatial speech reproduction capabilities of a KEMAR mouth simulator, a loudspeaker, the piston on sphere model and a circular harmonic fitting are evaluated in the near-field. The speech directivity of 24 human subjects, both male and female, is measured using a semi-circular microphone array of radius 36.5 cm in the horizontal plane. Impulse responses are captured for the two devices and filters are generated for the two numerical models to emulate their directional effect on speech reproduction. The four repeatable speech sources are evaluated through comparison to the recorded human speech both objectively, through directivity pattern and spectral magnitude differences, and subjectively, through a listening test on perceived coloration. Results show that the repeatable sources perform relatively well under the metric of directivity but irregularities in their directivity patterns introduce audible coloration for off-axis directions.","PeriodicalId":50008,"journal":{"name":"Journal of the Audio Engineering Society","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Audio Engineering Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.17743/jaes.2022.0022","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 2

Abstract

The spatial speech reproduction capabilities of a KEMAR mouth simulator, a loudspeaker, the piston on sphere model and a circular harmonic fitting are evaluated in the near-field. The speech directivity of 24 human subjects, both male and female, is measured using a semi-circular microphone array of radius 36.5 cm in the horizontal plane. Impulse responses are captured for the two devices and filters are generated for the two numerical models to emulate their directional effect on speech reproduction. The four repeatable speech sources are evaluated through comparison to the recorded human speech both objectively, through directivity pattern and spectral magnitude differences, and subjectively, through a listening test on perceived coloration. Results show that the repeatable sources perform relatively well under the metric of directivity but irregularities in their directivity patterns introduce audible coloration for off-axis directions.
可复制语音源的近场评价
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of the Audio Engineering Society
Journal of the Audio Engineering Society 工程技术-工程:综合
CiteScore
3.50
自引率
14.30%
发文量
53
审稿时长
1 months
期刊介绍: The Journal of the Audio Engineering Society — the official publication of the AES — is the only peer-reviewed journal devoted exclusively to audio technology. Published 10 times each year, it is available to all AES members and subscribers. The Journal contains state-of-the-art technical papers and engineering reports; feature articles covering timely topics; pre and post reports of AES conventions and other society activities; news from AES sections around the world; Standards and Education Committee work; membership news, patents, new products, and newsworthy developments in the field of audio.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信