Oriented Chromatic Number of Cartesian Products Pm □ Pn and Cm □ Pn

Pub Date : 2022-06-29 DOI:10.7151/dmgt.2307
Anna Nenca
{"title":"Oriented Chromatic Number of Cartesian Products Pm □ Pn and Cm □ Pn","authors":"Anna Nenca","doi":"10.7151/dmgt.2307","DOIUrl":null,"url":null,"abstract":"Abstract We consider oriented chromatic number of Cartesian products of two paths Pm □ Pn and of Cartesian products of paths and cycles, Cm □ Pn. We say that the oriented graph G→ \\vec G is colored by an oriented graph H→ \\vec H if there is a homomorphism from G→ \\vec G to H→ \\vec H . In this paper we show that there exists an oriented tournament H→10 {\\vec H_{10}} with ten vertices which colors every orientation of P8 □ Pn and every orientation of Cm □ Pn, for m = 3, 4, 5, 6, 7 and n ≥ 1. We also show that there exists an oriented graph T→16 {\\vec T_{16}} with sixteen vertices which colors every orientation of Cm □ Pn.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7151/dmgt.2307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract We consider oriented chromatic number of Cartesian products of two paths Pm □ Pn and of Cartesian products of paths and cycles, Cm □ Pn. We say that the oriented graph G→ \vec G is colored by an oriented graph H→ \vec H if there is a homomorphism from G→ \vec G to H→ \vec H . In this paper we show that there exists an oriented tournament H→10 {\vec H_{10}} with ten vertices which colors every orientation of P8 □ Pn and every orientation of Cm □ Pn, for m = 3, 4, 5, 6, 7 and n ≥ 1. We also show that there exists an oriented graph T→16 {\vec T_{16}} with sixteen vertices which colors every orientation of Cm □ Pn.
分享
查看原文
笛卡尔积的取向色数Pm□Pn和Cm□Pn
摘要我们考虑两条路径Pm的笛卡尔乘积的有向色数□ Pn和路径与循环的笛卡尔乘积Cm□ Pn.我们说有向图G→ \向量G由有向图H着色→ \vec H如果存在来自G的同态→ \向量G到H→ \vec H。本文证明了存在一个定向锦标赛H→具有十个顶点的10{\vec H_{10}},这些顶点为P8的每个方向着色□ Pn和Cm的每个方向□ Pn,当m=3、4、5、6、7且n≥1时。我们还证明了存在一个有向图T→具有16个顶点的16{\vec T_{16}}□ Pn。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信