{"title":"Methods to Detect Impact-Induced Orbit Perturbations Using Spacecraft Navigation Data","authors":"A. Bennett, R. Carpenter, H. Schaub","doi":"10.2514/1.a35495","DOIUrl":null,"url":null,"abstract":"Debris strikes on operational spacecraft are becoming more common due to increasing numbers of space objects. Sample return missions indicate hundreds of minor strikes, but rigorous analysis is often only performed when a strike causes an anomaly in spacecraft performance. Developing techniques to identify and assess minor strikes that do not immediately cause anomalous behavior can help to validate models for debris populations and aid in the attribution of future anomalies. This study develops methods to detect subtle abrupt orbit perturbations indicative of minor debris strikes. An extended Kalman filter with dynamic model compensation is used to estimate a spacecraft’s orbit state based on simulated full-state (i.e., GPS) measurements. The filter is applied to the data forward and backward in time, and then a modified Fraser–Potter smoother is used to produce a fused state estimate. Various test statistics are developed and compared to identify abrupt unexpected changes in spacecraft velocity; techniques include McReynold’s filter-smoother consistency test and the Mahalanobis distance between forward and backward filter states. A trade study is performed to investigate the performance of test statistics as a function of filter parameters, and a Monte Carlo analysis illustrates the filter’s ability to detect and estimate strikes.","PeriodicalId":50048,"journal":{"name":"Journal of Spacecraft and Rockets","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spacecraft and Rockets","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.a35495","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Debris strikes on operational spacecraft are becoming more common due to increasing numbers of space objects. Sample return missions indicate hundreds of minor strikes, but rigorous analysis is often only performed when a strike causes an anomaly in spacecraft performance. Developing techniques to identify and assess minor strikes that do not immediately cause anomalous behavior can help to validate models for debris populations and aid in the attribution of future anomalies. This study develops methods to detect subtle abrupt orbit perturbations indicative of minor debris strikes. An extended Kalman filter with dynamic model compensation is used to estimate a spacecraft’s orbit state based on simulated full-state (i.e., GPS) measurements. The filter is applied to the data forward and backward in time, and then a modified Fraser–Potter smoother is used to produce a fused state estimate. Various test statistics are developed and compared to identify abrupt unexpected changes in spacecraft velocity; techniques include McReynold’s filter-smoother consistency test and the Mahalanobis distance between forward and backward filter states. A trade study is performed to investigate the performance of test statistics as a function of filter parameters, and a Monte Carlo analysis illustrates the filter’s ability to detect and estimate strikes.
期刊介绍:
This Journal, that started it all back in 1963, is devoted to the advancement of the science and technology of astronautics and aeronautics through the dissemination of original archival research papers disclosing new theoretical developments and/or experimental result. The topics include aeroacoustics, aerodynamics, combustion, fundamentals of propulsion, fluid mechanics and reacting flows, fundamental aspects of the aerospace environment, hydrodynamics, lasers and associated phenomena, plasmas, research instrumentation and facilities, structural mechanics and materials, optimization, and thermomechanics and thermochemistry. Papers also are sought which review in an intensive manner the results of recent research developments on any of the topics listed above.