{"title":"Passive resistance of unsaturated backfill under steady state flow conditions","authors":"R. Ganesh, J. Sahoo, S. Rajesh","doi":"10.1080/17486025.2021.1955163","DOIUrl":null,"url":null,"abstract":"ABSTRACT This paper presents a unified semi-analytical solution to investigate the passive earth resistance of unsaturated soils retained by a rigid wall in the framework of limit-equilibrium approach based on a rotational log-spiral failure mechanism. Coupled influences of unit weight and suction stress changes in unsaturated soils under different steady vertical flow conditions have been considered to provide a more realistic solution. The impact of different parameters such as effective internal friction angle soil, inclination of backfill surface and wall back face, surcharge pressure, height of wall, location of water table, and soil–wall interface friction has been explored by performing a parametric study. It has been found that the changes in the suction stress and unit weight of unsaturated soils under different input parameters have a greater effect on modifying the critical slip surface, and magnitude and point of application of passive earth resistance on the retaining walls. The results obtained from the present study compare reasonably well with the solutions in the literature.","PeriodicalId":46470,"journal":{"name":"Geomechanics and Geoengineering-An International Journal","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2021-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics and Geoengineering-An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17486025.2021.1955163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 3
Abstract
ABSTRACT This paper presents a unified semi-analytical solution to investigate the passive earth resistance of unsaturated soils retained by a rigid wall in the framework of limit-equilibrium approach based on a rotational log-spiral failure mechanism. Coupled influences of unit weight and suction stress changes in unsaturated soils under different steady vertical flow conditions have been considered to provide a more realistic solution. The impact of different parameters such as effective internal friction angle soil, inclination of backfill surface and wall back face, surcharge pressure, height of wall, location of water table, and soil–wall interface friction has been explored by performing a parametric study. It has been found that the changes in the suction stress and unit weight of unsaturated soils under different input parameters have a greater effect on modifying the critical slip surface, and magnitude and point of application of passive earth resistance on the retaining walls. The results obtained from the present study compare reasonably well with the solutions in the literature.
期刊介绍:
Geomechanics is concerned with the application of the principle of mechanics to earth-materials (namely geo-material). Geoengineering covers a wide range of engineering disciplines related to geo-materials, such as foundation engineering, slope engineering, tunnelling, rock engineering, engineering geology and geo-environmental engineering. Geomechanics and Geoengineering is a major publication channel for research in the areas of soil and rock mechanics, geotechnical and geological engineering, engineering geology, geo-environmental engineering and all geo-material related engineering and science disciplines. The Journal provides an international forum for the exchange of innovative ideas, especially between researchers in Asia and the rest of the world.