{"title":"A Novel Scheme for Accurate Remaining Useful Life Prediction for Industrial IoTs by Using Deep Neural Network","authors":"Abdurrahman Pektas, ElifNurdan Pektas","doi":"10.5121/IJAIA.2018.9502","DOIUrl":null,"url":null,"abstract":"In the era of the fourth industrial revolution, measuring and ensuring the reliability, efficiency and safety of the industrial systems and components are one of the uppermost key concern. In addition, predicting performance degradation or remaining useful life (RUL) of an equipment over time based on its historical sensor data enables companies to greatly reduce their maintenance cost. In this way, companies can prevent costly unexpected breakdown and become more profitable and competitive in the marketplace. This paper introduces a deep learning-based method by combining CNN(Convolutional Neural Networks) and LSTM (Long Short-Term Memory)neural networks to predict RUL for industrial equipment. The proposed method does not depend upon any degradation trend assumptions and it can learn complex temporal representative and distinguishing patterns in the sensor data. In order to evaluate the efficiency and effectiveness of the proposed method, we evaluated it on two different experiment: RUL estimation and predicting the status of the IoT devices in 2-week period. Experiments are conducted on a publicly available NASA’s turbo fan-engine dataset. Based on the experiment results, the deep learning-based approach achieved high prediction accuracy. Moreover, the results show that the method outperforms standard well-accepted machine learning algorithms and accomplishes competitive performance when compared to the state-of-the art methods.","PeriodicalId":93188,"journal":{"name":"International journal of artificial intelligence & applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of artificial intelligence & applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/IJAIA.2018.9502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
In the era of the fourth industrial revolution, measuring and ensuring the reliability, efficiency and safety of the industrial systems and components are one of the uppermost key concern. In addition, predicting performance degradation or remaining useful life (RUL) of an equipment over time based on its historical sensor data enables companies to greatly reduce their maintenance cost. In this way, companies can prevent costly unexpected breakdown and become more profitable and competitive in the marketplace. This paper introduces a deep learning-based method by combining CNN(Convolutional Neural Networks) and LSTM (Long Short-Term Memory)neural networks to predict RUL for industrial equipment. The proposed method does not depend upon any degradation trend assumptions and it can learn complex temporal representative and distinguishing patterns in the sensor data. In order to evaluate the efficiency and effectiveness of the proposed method, we evaluated it on two different experiment: RUL estimation and predicting the status of the IoT devices in 2-week period. Experiments are conducted on a publicly available NASA’s turbo fan-engine dataset. Based on the experiment results, the deep learning-based approach achieved high prediction accuracy. Moreover, the results show that the method outperforms standard well-accepted machine learning algorithms and accomplishes competitive performance when compared to the state-of-the art methods.