{"title":"Nutritional and lactational effects on follicular development in the pig.","authors":"H. Quesnel","doi":"10.1530/biosciprocs.18.0014","DOIUrl":null,"url":null,"abstract":"In sows, follicular development is inhibited during lactation, and weaning the piglets allows recruitment and selection of follicles that will undergo preovulatory maturation and ovulate. Lactation inhibits GnRH secretion, and in turn LH secretion, through neuroendocrine stimuli induced by suckling. Pituitary response to GnRH and the sensitivity of the hypothalamo-pituitary unit to oestradiol positive feedback are also reduced. The impact of lactation on the reproductive axis is further complicated by the physiological and metabolic adaptations that are developed for milk production and that depend on nutrient intake, nutrient needs and body reserves. A strongly catabolic state during lactation amplifies the inhibition of LH secretion, thereby inducing a delay of oestrus and ovulation after weaning. Nevertheless, post-weaning ovulation is less delayed nowadays than in the 1970's or 80's. Nutritional deficiency has also deleterious effects on embryo survival, which are likely related to alterations in follicular growth and maturation. The physiological mechanisms by which information on the metabolic changes is transmitted to the hypothalamus-pituitary-ovary axis are not fully understood in the sow. Glucose, insulin and leptin are the most likely signals informing the hypothalamus of the metabolic state, yet their roles have not been definitely established. At the ovarian level, folliculogenesis is likely to be altered by the reduction in insulin and IGF-I concentrations induced by nutritional deficiency. More knowledge is needed at the intrafollicular level to better understand nutritional effects on follicular development, and also on occyte quality and embryo development.","PeriodicalId":87420,"journal":{"name":"Society of Reproduction and Fertility supplement","volume":"66 1","pages":"121-34"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Society of Reproduction and Fertility supplement","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1530/biosciprocs.18.0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44
Abstract
In sows, follicular development is inhibited during lactation, and weaning the piglets allows recruitment and selection of follicles that will undergo preovulatory maturation and ovulate. Lactation inhibits GnRH secretion, and in turn LH secretion, through neuroendocrine stimuli induced by suckling. Pituitary response to GnRH and the sensitivity of the hypothalamo-pituitary unit to oestradiol positive feedback are also reduced. The impact of lactation on the reproductive axis is further complicated by the physiological and metabolic adaptations that are developed for milk production and that depend on nutrient intake, nutrient needs and body reserves. A strongly catabolic state during lactation amplifies the inhibition of LH secretion, thereby inducing a delay of oestrus and ovulation after weaning. Nevertheless, post-weaning ovulation is less delayed nowadays than in the 1970's or 80's. Nutritional deficiency has also deleterious effects on embryo survival, which are likely related to alterations in follicular growth and maturation. The physiological mechanisms by which information on the metabolic changes is transmitted to the hypothalamus-pituitary-ovary axis are not fully understood in the sow. Glucose, insulin and leptin are the most likely signals informing the hypothalamus of the metabolic state, yet their roles have not been definitely established. At the ovarian level, folliculogenesis is likely to be altered by the reduction in insulin and IGF-I concentrations induced by nutritional deficiency. More knowledge is needed at the intrafollicular level to better understand nutritional effects on follicular development, and also on occyte quality and embryo development.