Int-amplified endomorphisms of compact Kähler spaces

IF 0.5 4区 数学 Q3 MATHEMATICS
Guolei Zhong
{"title":"Int-amplified endomorphisms of compact Kähler spaces","authors":"Guolei Zhong","doi":"10.4310/AJM.2021.v25.n3.a3","DOIUrl":null,"url":null,"abstract":"Let $X$ be a normal compact Kahler space of dimension $n$. A surjective endomorphism $f$ of such $X$ is int-amplified if $f^*\\xi-\\xi=\\eta$ for some Kahler classes $\\xi$ and $\\eta$. First, we show that this definition generalizes the notation in the projective setting. Second, we prove that for the cases of $X$ being smooth, a surface or a threefold with mild singularities, if $X$ admits an int-amplified endomorphism with pseudo-effective canonical divisor, then it is a $Q$-torus. Finally, we consider a normal compact Kahler threefold $Y$ with only terminal singularities and show that, replacing $f$ by a positive power, we can run the minimal model program (MMP) $f$-equivariantly for such $Y$ and reach either a $Q$-torus or a Fano (projective) variety of Picard number one.","PeriodicalId":55452,"journal":{"name":"Asian Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/AJM.2021.v25.n3.a3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

Let $X$ be a normal compact Kahler space of dimension $n$. A surjective endomorphism $f$ of such $X$ is int-amplified if $f^*\xi-\xi=\eta$ for some Kahler classes $\xi$ and $\eta$. First, we show that this definition generalizes the notation in the projective setting. Second, we prove that for the cases of $X$ being smooth, a surface or a threefold with mild singularities, if $X$ admits an int-amplified endomorphism with pseudo-effective canonical divisor, then it is a $Q$-torus. Finally, we consider a normal compact Kahler threefold $Y$ with only terminal singularities and show that, replacing $f$ by a positive power, we can run the minimal model program (MMP) $f$-equivariantly for such $Y$ and reach either a $Q$-torus or a Fano (projective) variety of Picard number one.
紧缩Kähler空间的内放大自同态
设$X$是维数为$n$的正规紧致Kahler空间。对于某些Kahler类$\nenenebc xi$和$\eta$,如果$f^*\neneneba xi-\nenenebb xi=\eta$则这种$X$的满射自同构$f$是内扩的。首先,我们证明了这个定义推广了射影环境中的记法。其次,我们证明了对于$X$是光滑的,一个具有温和奇点的曲面或三重的情况,如果$X$允许一个具有伪有效正则除数的整数放大自同态,那么它就是$Q$-环面。最后,我们考虑一个只有终端奇点的正规紧致Kahler三重$Y$,并证明用正幂代替$f$,我们可以对这样的$Y$等变地运行最小模型程序(MMP)$f$并达到Picard数1的$Q$环面或Fano(投影)变种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes original research papers and survey articles on all areas of pure mathematics and theoretical applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信