{"title":"Q-rung orthopair normal fuzzy Maclaurin symmetric mean aggregation operators based on Schweizer-Skla operations","authors":"Dongwei Liu, Xiaomin Zhu, Runtong Zhang","doi":"10.1177/16878132231190996","DOIUrl":null,"url":null,"abstract":"In order to be able to make a good decision, we need to evaluate the uncertainty information of multiple attributes of different alternatives that obey the normal distribution, and the interrelationship among multiple attributes should be considered in the process of evaluating. This paper aims to propose a new multiple attribute decision-making (MADM) method, which uses a new aggregation operator to evaluate the uncertainty information that obey normal distribution comprehensively. We firstly extended Schweizer-Sklar (SS) t-norm (TN) and t-conorm (TCN) to q-rung orthopair normal fuzzy number (q-RONFN) and defined the Schweizer-Skla operational laws of q-rung orthopair normal fuzzy set (q-RONFs). Secondly, we developed q-rung orthopair normal fuzzy Maclaurin symmetric mean aggregation operators based on SS operations considering that the Maclaurin symmetric mean operator can reflect the interrelationship among multiple input variables. Furthermore, we discussed some desirable properties of the above operators, such as monotonicity, commutativity, and idempotency. Lastly, we proposed a novel MADM method based on developed aggregation operators. A numerical example on enterprise partner selection is given to testify the effectiveness of the developed method. The results of analysis indicated that our proposed aggregation operators have stronger information aggregation ability and are more general and flexible for MADM problems.","PeriodicalId":49110,"journal":{"name":"Advances in Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/16878132231190996","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In order to be able to make a good decision, we need to evaluate the uncertainty information of multiple attributes of different alternatives that obey the normal distribution, and the interrelationship among multiple attributes should be considered in the process of evaluating. This paper aims to propose a new multiple attribute decision-making (MADM) method, which uses a new aggregation operator to evaluate the uncertainty information that obey normal distribution comprehensively. We firstly extended Schweizer-Sklar (SS) t-norm (TN) and t-conorm (TCN) to q-rung orthopair normal fuzzy number (q-RONFN) and defined the Schweizer-Skla operational laws of q-rung orthopair normal fuzzy set (q-RONFs). Secondly, we developed q-rung orthopair normal fuzzy Maclaurin symmetric mean aggregation operators based on SS operations considering that the Maclaurin symmetric mean operator can reflect the interrelationship among multiple input variables. Furthermore, we discussed some desirable properties of the above operators, such as monotonicity, commutativity, and idempotency. Lastly, we proposed a novel MADM method based on developed aggregation operators. A numerical example on enterprise partner selection is given to testify the effectiveness of the developed method. The results of analysis indicated that our proposed aggregation operators have stronger information aggregation ability and are more general and flexible for MADM problems.
期刊介绍:
Advances in Mechanical Engineering (AIME) is a JCR Ranked, peer-reviewed, open access journal which publishes a wide range of original research and review articles. The journal Editorial Board welcomes manuscripts in both fundamental and applied research areas, and encourages submissions which contribute novel and innovative insights to the field of mechanical engineering