M. Akman, Jasun Gong, Jay Hineman, Johnny M. Lewis, A. Vogel
{"title":"The Brunn-Minkowski Inequality and A Minkowski Problem for Nonlinear Capacity","authors":"M. Akman, Jasun Gong, Jay Hineman, Johnny M. Lewis, A. Vogel","doi":"10.1090/memo/1348","DOIUrl":null,"url":null,"abstract":"<p>In this article we study two classical potential-theoretic problems in convex geometry. The first problem is an inequality of Brunn-Minkowski type for a nonlinear capacity, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C a p Subscript script upper A Baseline comma\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>Cap</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">A</mml:mi>\n </mml:mrow>\n </mml:mrow>\n </mml:msub>\n <mml:mo>,</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\operatorname {Cap}_{\\mathcal {A}},</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper A\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">A</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {A}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-capacity is associated with a nonlinear elliptic PDE whose structure is modeled on the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-Laplace equation and whose solutions in an open set are called <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper A\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">A</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {A}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-harmonic.</p>\n\n<p>In the first part of this article, we prove the Brunn-Minkowski inequality for this capacity: <disp-formula content-type=\"math/mathml\">\n\\[\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket upper C a p Subscript script upper A Baseline left-parenthesis lamda upper E 1 plus left-parenthesis 1 minus lamda right-parenthesis upper E 2 right-parenthesis right-bracket Superscript StartFraction 1 Over left-parenthesis n minus p right-parenthesis EndFraction Baseline greater-than-or-equal-to lamda left-bracket upper C a p Subscript script upper A Baseline left-parenthesis upper E 1 right-parenthesis right-bracket Superscript StartFraction 1 Over left-parenthesis n minus p right-parenthesis EndFraction Baseline plus left-parenthesis 1 minus lamda right-parenthesis left-bracket upper C a p Subscript script upper A Baseline left-parenthesis upper E 2 right-parenthesis right-bracket Superscript StartFraction 1 Over left-parenthesis n minus p right-parenthesis EndFraction\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mrow>\n <mml:mo>[</mml:mo>\n <mml:msub>\n <mml:mi>Cap</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">A</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo><!-- --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:msub>\n <mml:mi>E</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo>+</mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:msub>\n <mml:mi>E</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>]</mml:mo>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mfrac>\n <mml:mn>1</mml:mn>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>n</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>p</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n </mml:mfrac>\n </mml:mrow>\n </mml:msup>\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mspace width=\"thinmathspace\" />\n <mml:msup>\n <mml:mrow>\n <mml:mo>[</mml:mo>\n <mml:msub>\n <mml:mi>Cap</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">A</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo><!-- --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>E</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>]</mml:mo>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mfrac>\n <mml:mn>1</mml:mn>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>n</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>p</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n </mml:mfrac>\n </mml:mrow>\n </mml:msup>\n <mml:mo>+</mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:msup>\n <mml:mrow>\n <mml:mo>[</mml:mo>\n <mml:msub>\n <mml:mi>Cap</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">A</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo><!-- --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>E</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>]</mml:mo>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mfrac>\n <mml:mn>1</mml:mn>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>n</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>p</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n </mml:mfrac>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\left [\\operatorname {Cap}_\\mathcal {A} ( \\lambda E_1 + (1-\\lambda ) E_2 )\\right ]^{\\frac {1}{(n-p)}} \\geq \\lambda \\, \\left [\\operatorname {Cap}_\\mathcal {A} ( E_1 )\\right ]^{\\frac {1}{(n-p)}} + (1-\\lambda ) \\left [\\operatorname {Cap}_\\mathcal {A} (E_2 )\\right ]^{\\frac {1}{(n-p)}}</mml:annotation>\n </mml:semantics>\n</mml:math>\n\\]\n</disp-formula> when <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1 greater-than p greater-than n comma 0 greater-than lamda greater-than 1 comma\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>1</mml:mn>\n <mml:mo>></mml:mo>\n <mml:mi>p</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mi>n</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo>></mml:mo>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mo>></mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo>,</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">1>p>n, 0 > \\lambda > 1,</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E 1 comma upper E 2\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>E</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi>E</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">E_1, E_2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> are convex compact sets with positive <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper A\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">A</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {A}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-capacity. Moreover, if equality holds in the above inequality for some <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E 1\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>E</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">E_1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E 2 comma\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>E</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:mo>,</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">E_2,</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> then under certain regularity and structural assumptions on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper A comma\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathv","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memoirs of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1348","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 28
Abstract
In this article we study two classical potential-theoretic problems in convex geometry. The first problem is an inequality of Brunn-Minkowski type for a nonlinear capacity, CapA,\operatorname {Cap}_{\mathcal {A}}, where A\mathcal {A}-capacity is associated with a nonlinear elliptic PDE whose structure is modeled on the pp-Laplace equation and whose solutions in an open set are called A\mathcal {A}-harmonic.
In the first part of this article, we prove the Brunn-Minkowski inequality for this capacity:
\[
[CapA(λE1+(1−λ)E2)]1(n−p)≥λ[CapA(E1)]1(n−p)+(1−λ)[CapA(E2)]1(n−p)\left [\operatorname {Cap}_\mathcal {A} ( \lambda E_1 + (1-\lambda ) E_2 )\right ]^{\frac {1}{(n-p)}} \geq \lambda \, \left [\operatorname {Cap}_\mathcal {A} ( E_1 )\right ]^{\frac {1}{(n-p)}} + (1-\lambda ) \left [\operatorname {Cap}_\mathcal {A} (E_2 )\right ]^{\frac {1}{(n-p)}}
\]
when 1>p>n,0>λ>1,1>p>n, 0 > \lambda > 1, and E1,E2E_1, E_2 are convex compact sets with positive A\mathcal {A}-capacity. Moreover, if equality holds in the above inequality for some E1E_1 and E2,E_2, then under certain regularity and structural assumptions on
期刊介绍:
Memoirs of the American Mathematical Society is devoted to the publication of research in all areas of pure and applied mathematics. The Memoirs is designed particularly to publish long papers or groups of cognate papers in book form, and is under the supervision of the Editorial Committee of the AMS journal Transactions of the AMS. To be accepted by the editorial board, manuscripts must be correct, new, and significant. Further, they must be well written and of interest to a substantial number of mathematicians.