J. Havlíček, K. Myška, W. Tejchman, N. Karaskova, R. Doležal, Nadezhda V. Maltsevskaya, K. Kolář
{"title":"Microwave synthesis of sulfanilic acid","authors":"J. Havlíček, K. Myška, W. Tejchman, N. Karaskova, R. Doležal, Nadezhda V. Maltsevskaya, K. Kolář","doi":"10.1515/cdem-2017-0005","DOIUrl":null,"url":null,"abstract":"Abstract Sulfanilic acid represents an important substance, which is frequently utilized in the industry of azo dyes as well as in drug development of antimicrobials (e.g. of sulfonamides). Students can also meet with such type of compounds in chemistry labs, for example, when they estimate pH by methyl orange indicator or prepare Orange II for textile colouring. Both of these dyes are products of azo coupling of sulfanilic acid as diazonium salt with N,N-dimethylaniline or 2-naphthol, respectively. In the article, we focus on the synthesis of sulfanilic acid as a well-known experiment in the organic chemistry education. The synthesis was modified as the solvent free and microwave assisted experiment under semimicroscale conditions. That experiment is very convenient for the organic chemistry courses in the university or the high school teaching.","PeriodicalId":41079,"journal":{"name":"Chemistry-Didactics-Ecology-Metrology","volume":"22 1","pages":"93 - 98"},"PeriodicalIF":0.7000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/cdem-2017-0005","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry-Didactics-Ecology-Metrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cdem-2017-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract Sulfanilic acid represents an important substance, which is frequently utilized in the industry of azo dyes as well as in drug development of antimicrobials (e.g. of sulfonamides). Students can also meet with such type of compounds in chemistry labs, for example, when they estimate pH by methyl orange indicator or prepare Orange II for textile colouring. Both of these dyes are products of azo coupling of sulfanilic acid as diazonium salt with N,N-dimethylaniline or 2-naphthol, respectively. In the article, we focus on the synthesis of sulfanilic acid as a well-known experiment in the organic chemistry education. The synthesis was modified as the solvent free and microwave assisted experiment under semimicroscale conditions. That experiment is very convenient for the organic chemistry courses in the university or the high school teaching.