Quasi-categories vs. Segal spaces: Cartesian edition

Pub Date : 2021-08-20 DOI:10.1007/s40062-021-00288-2
Nima Rasekh
{"title":"Quasi-categories vs. Segal spaces: Cartesian edition","authors":"Nima Rasekh","doi":"10.1007/s40062-021-00288-2","DOIUrl":null,"url":null,"abstract":"<div><p>We prove that four different ways of defining Cartesian fibrations and the Cartesian model structure are all Quillen equivalent: </p><ol>\n <li>\n <span>1.</span>\n \n <p>On marked simplicial sets (due to Lurie [31]),</p>\n \n </li>\n <li>\n <span>2.</span>\n \n <p>On bisimplicial spaces (due to deBrito [12]),</p>\n \n </li>\n <li>\n <span>3.</span>\n \n <p>On bisimplicial sets,</p>\n \n </li>\n <li>\n <span>4.</span>\n \n <p>On marked simplicial spaces.</p>\n \n </li>\n </ol><p> The main way to prove these equivalences is by using the Quillen equivalences between quasi-categories and complete Segal spaces as defined by Joyal–Tierney and the straightening construction due to Lurie.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-021-00288-2","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-021-00288-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We prove that four different ways of defining Cartesian fibrations and the Cartesian model structure are all Quillen equivalent:

  1. 1.

    On marked simplicial sets (due to Lurie [31]),

  2. 2.

    On bisimplicial spaces (due to deBrito [12]),

  3. 3.

    On bisimplicial sets,

  4. 4.

    On marked simplicial spaces.

The main way to prove these equivalences is by using the Quillen equivalences between quasi-categories and complete Segal spaces as defined by Joyal–Tierney and the straightening construction due to Lurie.

分享
查看原文
准范畴与西格尔空间:笛卡尔版
我们证明了四种不同的定义笛卡尔振动和笛卡尔模型结构的方法都是Quillen等效的:1。在标记简单集上(由于Lurie[31]), 2。2 .关于双斜空间(由于deBrito [12]),在二项式集上,4。在标记的简单空间上。证明这些等价的主要方法是利用Joyal-Tierney定义的拟范畴与完全Segal空间之间的Quillen等价以及Lurie的拉直构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信