Monitoring of Social Network and Change Detection by Applying Statistical Process: ERGM

Q2 Engineering
Frshid Rajabi, A. Saghaei, S. Sadinejad
{"title":"Monitoring of Social Network and Change Detection by Applying Statistical Process: ERGM","authors":"Frshid Rajabi, A. Saghaei, S. Sadinejad","doi":"10.22094/JOIE.2019.581174.1615","DOIUrl":null,"url":null,"abstract":"The statistical modeling of social network data needs much effort  because of the complex dependence structure of the tie variables. In order to formulate such dependences, the statistical exponential families of distributions can provide a flexible structure. In this regard, the statistical characteristics of the network is provided to be encapsulated within an Exponential Random Graph Model (ERGM). Applying the ERGM, in this paper, we follow to design a statistical process control through network behavior. The results demonstrated the superiority of the designed chart over the existing change detection methods in controlling the states. Additionally, the detection process is formulated for the social networks and the results are statistically analyzed.","PeriodicalId":36956,"journal":{"name":"Journal of Optimization in Industrial Engineering","volume":"13 1","pages":"131-143"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optimization in Industrial Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22094/JOIE.2019.581174.1615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

The statistical modeling of social network data needs much effort  because of the complex dependence structure of the tie variables. In order to formulate such dependences, the statistical exponential families of distributions can provide a flexible structure. In this regard, the statistical characteristics of the network is provided to be encapsulated within an Exponential Random Graph Model (ERGM). Applying the ERGM, in this paper, we follow to design a statistical process control through network behavior. The results demonstrated the superiority of the designed chart over the existing change detection methods in controlling the states. Additionally, the detection process is formulated for the social networks and the results are statistically analyzed.
基于统计过程的社会网络监测与变化检测:ERGM
社会网络数据的统计建模由于其关联变量的复杂依赖结构而需要付出很大的努力。为了表述这种依赖关系,分布的统计指数族可以提供一个灵活的结构。在这方面,网络的统计特征被提供封装在指数随机图模型(ERGM)中。本文应用ERGM,设计了一个基于网络行为的统计过程控制。结果表明,所设计的图在控制状态方面优于现有的变化检测方法。此外,为社交网络制定了检测过程,并对结果进行了统计分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Optimization in Industrial Engineering
Journal of Optimization in Industrial Engineering Engineering-Industrial and Manufacturing Engineering
CiteScore
2.90
自引率
0.00%
发文量
0
审稿时长
32 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信