Optimal Order Batching in Warehouse Management: A Data-Driven Robust Approach

Vedat Bayram, Gohram Baloch, Fatma Gzara, S. Elhedhli
{"title":"Optimal Order Batching in Warehouse Management: A Data-Driven Robust Approach","authors":"Vedat Bayram, Gohram Baloch, Fatma Gzara, S. Elhedhli","doi":"10.1287/ijoo.2021.0066","DOIUrl":null,"url":null,"abstract":"Optimizing warehouse processes has direct impact on supply chain responsiveness, timely order fulfillment, and customer satisfaction. In this work, we focus on the picking process in warehouse management and study it from a data perspective. Using historical data from an industrial partner, we introduce, model, and study the robust order batching problem (ROBP) that groups orders into batches to minimize total order processing time accounting for uncertainty caused by system congestion and human behavior. We provide a generalizable, data-driven approach that overcomes warehouse-specific assumptions characterizing most of the work in the literature. We analyze historical data to understand the processes in the warehouse, to predict processing times, and to improve order processing. We introduce the ROBP and develop an efficient learning-based branch-and-price algorithm based on simultaneous column and row generation, embedded with alternative prediction models such as linear regression and random forest that predict processing time of a batch. We conduct extensive computational experiments to test the performance of the proposed approach and to derive managerial insights based on real data. The data-driven prescriptive analytics tool we propose achieves savings of seven to eight minutes per order, which translates into a 14.8% increase in daily picking operations capacity of the warehouse.","PeriodicalId":73382,"journal":{"name":"INFORMS journal on optimization","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INFORMS journal on optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/ijoo.2021.0066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Optimizing warehouse processes has direct impact on supply chain responsiveness, timely order fulfillment, and customer satisfaction. In this work, we focus on the picking process in warehouse management and study it from a data perspective. Using historical data from an industrial partner, we introduce, model, and study the robust order batching problem (ROBP) that groups orders into batches to minimize total order processing time accounting for uncertainty caused by system congestion and human behavior. We provide a generalizable, data-driven approach that overcomes warehouse-specific assumptions characterizing most of the work in the literature. We analyze historical data to understand the processes in the warehouse, to predict processing times, and to improve order processing. We introduce the ROBP and develop an efficient learning-based branch-and-price algorithm based on simultaneous column and row generation, embedded with alternative prediction models such as linear regression and random forest that predict processing time of a batch. We conduct extensive computational experiments to test the performance of the proposed approach and to derive managerial insights based on real data. The data-driven prescriptive analytics tool we propose achieves savings of seven to eight minutes per order, which translates into a 14.8% increase in daily picking operations capacity of the warehouse.
仓库管理中的最优订单批处理:数据驱动的鲁棒方法
优化仓库流程直接影响供应链的响应能力、订单的及时履行和客户满意度。在这项工作中,我们专注于仓库管理中的拣选过程,并从数据的角度对其进行研究。利用来自行业合作伙伴的历史数据,我们引入、建模和研究了鲁棒订单批处理问题(ROBP),该问题将订单分组为批,以最大限度地减少订单处理总时间,同时考虑到系统拥塞和人为行为造成的不确定性。我们提供了一种可推广的、数据驱动的方法,该方法克服了文献中大多数工作的仓库特定假设。我们分析历史数据以了解仓库中的流程,预测处理时间,并改进订单处理。我们引入了ROBP,并开发了一种基于学习的高效分支和价格算法,该算法基于同时生成列和行,嵌入了预测批次处理时间的替代预测模型,如线性回归和随机森林。我们进行了大量的计算实验,以测试所提出的方法的性能,并基于真实数据得出管理见解。我们提出的数据驱动的规定性分析工具可以为每份订单节省7到8分钟的时间,这意味着仓库的日常分拣操作能力提高了14.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信